Spaces:
Sleeping
Sleeping
from flask import Flask,request,render_template | |
import numpy as np | |
import pandas as pd | |
import logging | |
from sklearn.preprocessing import StandardScaler | |
from src.pipeline.predict_pipeline import CustomData,PredictPipeline | |
application=Flask(__name__) | |
app=application | |
## Route for a home page | |
def predict_datapoint(): | |
if request.method=='GET': | |
return render_template('home.html') | |
else: | |
data=CustomData( | |
gender=request.form.get('gender'), | |
race_ethnicity=request.form.get('ethnicity'), | |
parental_level_of_education=request.form.get('parental_level_of_education'), | |
lunch=request.form.get('lunch'), | |
test_preparation_course=request.form.get('test_preparation_course'), | |
reading_score=float(request.form.get('writing_score')), | |
writing_score=float(request.form.get('reading_score')) | |
) | |
pred_df=data.get_data_as_data_frame() | |
print(pred_df) | |
print("Before Prediction") | |
predict_pipeline=PredictPipeline() | |
print("Mid Prediction") | |
results=predict_pipeline.predict(pred_df) | |
print("after Prediction") | |
return render_template('home.html',results=results[0]) | |
if __name__=="__main__": | |
logging.basicConfig(level=logging.DEBUG) | |
app.run(debug=True,port=7860,host="0.0.0.0") |