Spaces:
Sleeping
Sleeping
File size: 1,393 Bytes
54e6328 364878c 54e6328 7ebdfaa 54e6328 364878c 54e6328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
from flask import Flask,request,render_template
import numpy as np
import pandas as pd
import logging
from sklearn.preprocessing import StandardScaler
from src.pipeline.predict_pipeline import CustomData,PredictPipeline
application=Flask(__name__)
app=application
## Route for a home page
@app.route('/',methods=['GET','POST'])
def predict_datapoint():
if request.method=='GET':
return render_template('home.html')
else:
data=CustomData(
gender=request.form.get('gender'),
race_ethnicity=request.form.get('ethnicity'),
parental_level_of_education=request.form.get('parental_level_of_education'),
lunch=request.form.get('lunch'),
test_preparation_course=request.form.get('test_preparation_course'),
reading_score=float(request.form.get('writing_score')),
writing_score=float(request.form.get('reading_score'))
)
pred_df=data.get_data_as_data_frame()
print(pred_df)
print("Before Prediction")
predict_pipeline=PredictPipeline()
print("Mid Prediction")
results=predict_pipeline.predict(pred_df)
print("after Prediction")
return render_template('home.html',results=results[0])
if __name__=="__main__":
logging.basicConfig(level=logging.DEBUG)
app.run(debug=True,port=7860,host="0.0.0.0") |