init
Browse files
app.py
CHANGED
@@ -1,53 +1,101 @@
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def gradio_chat(usertxt, chat_history):
|
21 |
-
|
22 |
-
|
23 |
-
chat = gemini.ChatModel.start_chat(history=chat_history)
|
24 |
-
# Send user message to the Gemini model
|
25 |
-
response = chat.send_message(usertxt)
|
26 |
-
# Append user and assistant's responses to the chat history
|
27 |
-
chat_history.append({"role": "user", "content": usertxt})
|
28 |
-
chat_history.append({"role": "assistant", "content": response.text})
|
29 |
-
return chat_history, chat_history
|
30 |
-
except Exception as e:
|
31 |
-
error_message = f"Error occurred: {str(e)}"
|
32 |
-
chat_history.append({"role": "assistant", "content": error_message})
|
33 |
-
return chat_history, chat_history
|
34 |
-
|
35 |
-
# HTML content for Gradio interface (you can customize this as needed)
|
36 |
html_content = """
|
37 |
-
<
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
"""
|
40 |
|
41 |
-
#
|
42 |
with gr.Blocks() as demo:
|
43 |
gr.HTML(html_content)
|
44 |
-
chatbot = gr.
|
45 |
-
user_input = gr.Textbox(placeholder="Enter your message here...")
|
46 |
-
chat_history = gr.State([])
|
47 |
-
submit_btn = gr.Button("Submit")
|
48 |
-
|
49 |
-
# When submit button is clicked, trigger the chat function
|
50 |
-
submit_btn.click(gradio_chat, inputs=[user_input, chat_history], outputs=[chatbot, chat_history])
|
51 |
|
52 |
-
# Launch the
|
53 |
demo.launch()
|
|
|
1 |
+
Hey this code is running into an error! import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import google.generativeai as genai
|
4 |
+
import kagglehub
|
5 |
import os
|
6 |
+
|
7 |
+
# Download the Kaggle dataset
|
8 |
+
path = kagglehub.dataset_download("fahmidachowdhury/food-adulteration-dataset")
|
9 |
+
|
10 |
+
# List the files in the dataset folder and assign the first one (assuming it's the desired file)
|
11 |
+
dataset_file = os.listdir(path)[0]
|
12 |
+
path = os.path.join(path, dataset_file)
|
13 |
+
|
14 |
+
# Configure Google Gemini API
|
15 |
+
# gemapi = os.getenv("GeminiApi")
|
16 |
+
gemapi = "AIzaSyAmDOBWfGuEju0oZyUIcn_H0k8XW0cTP7k"
|
17 |
+
genai.configure(api_key=gemapi)
|
18 |
+
|
19 |
+
# Load the dataset
|
20 |
+
data = pd.read_csv(path)
|
21 |
+
|
22 |
+
# Define the system instructions for the model
|
23 |
+
system_instruction = f"""
|
24 |
+
You are a public assistant who specializes in food safety. You look at data and explain to the user any question they ask; here is your data: {str(data.to_json())}
|
25 |
+
You are also a food expert in the Indian context. You act as a representative of the government or public agencies, always keeping the needs of the people at the forefront.
|
26 |
+
You will try to help the customer launch a feedback review whenever they complain. You are to prepare a "markdown" report, which is detailed and can be sent to the company or restaurant.
|
27 |
+
In case of a complaint or a grievance, you will act like a detective gathering necessary information from the user until you are satisfied. Once you gather all the info, you are supposed to generate a markdown report.
|
28 |
+
Once the customer asks you to show them the markdown report, you will use the information given to you to generate it.
|
29 |
+
You will ask the customer a single question at a time, which is relevant, and you will not repeat another question until you've generated the report.
|
30 |
+
"""
|
31 |
+
|
32 |
+
# Initialize the model
|
33 |
+
model_path = "gemini-1.5-flash"
|
34 |
+
FoodSafetyAssistant = genai.GenerativeModel(model_path, system_instruction=system_instruction)
|
35 |
+
|
36 |
+
# Track chat history globally
|
37 |
+
chat_history = []
|
38 |
+
|
39 |
+
# Define the function to handle the chat
|
40 |
+
def respond(usertxt, chat_history):
|
41 |
+
# Initialize chat with the previous history
|
42 |
+
chat = FoodSafetyAssistant.start_chat(history=chat_history)
|
43 |
+
|
44 |
+
# Get response from the assistant
|
45 |
+
response = chat.send_message(usertxt)
|
46 |
+
|
47 |
+
# Append both user input and response to the chat history for context in the next interaction
|
48 |
+
chat_history.append({"role": "user", "content": usertxt})
|
49 |
+
chat_history.append({"role": "assistant", "content": response.text})
|
50 |
+
|
51 |
+
return response.text, chat_history
|
52 |
+
|
53 |
+
# Gradio interface
|
54 |
def gradio_chat(usertxt, chat_history):
|
55 |
+
response, updated_history = respond(usertxt, chat_history)
|
56 |
+
return response, updated_history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
html_content = """
|
58 |
+
<div style="background-color:#f9f9f9; padding:20px; border-radius:10px;">
|
59 |
+
<!-- Project Title and Problem Statement Section -->
|
60 |
+
<h1 style="color:#34495e;">Food Safety Assistant</h1>
|
61 |
+
<h3 style="color:#2c3e50;">Your AI-Powered Assistant for Food Safety</h3>
|
62 |
+
<!-- Short Intro About AI-Chat -->
|
63 |
+
<p style="color:#7f8c8d;">
|
64 |
+
Our platform allows consumers to report potential food safety violations, validate reports through AI, and notify local authorities. This proactive approach fosters community involvement in ensuring food integrity.
|
65 |
+
</p>
|
66 |
+
<!-- Core Functionalities Title -->
|
67 |
+
<h4 style="color:#e74c3c; text-align:center;">Core Functionalities</h4>
|
68 |
+
<!-- Functionality Boxes in a Flex Layout -->
|
69 |
+
<div style="display:flex; justify-content: space-around; align-items:center; margin-top:20px;">
|
70 |
+
<!-- Functionality 1 -->
|
71 |
+
<div style="border: 2px solid #3498db; border-radius: 15px; padding: 20px; width: 150px; text-align: center;">
|
72 |
+
<h4 style="color:#2980b9;">Report Issues</h4>
|
73 |
+
<p style="color:#7f8c8d; font-size: 12px;">Submit details like the restaurant name and the issue, anonymously.</p>
|
74 |
+
</div>
|
75 |
+
|
76 |
+
<!-- Functionality 2 -->
|
77 |
+
<div style="border: 2px solid #3498db; border-radius: 15px; padding: 20px; width: 150px; text-align: center;">
|
78 |
+
<h4 style="color:#2980b9;">AI Validation</h4>
|
79 |
+
<p style="color:#7f8c8d; font-size: 12px;">Validate reports using AI, ensuring accuracy and preventing duplicates.</p>
|
80 |
+
</div>
|
81 |
+
<!-- Functionality 3 -->
|
82 |
+
<div style="border: 2px solid #3498db; border-radius: 15px; padding: 20px; width: 150px; text-align: center;">
|
83 |
+
<h4 style="color:#2980b9;">Alerts</h4>
|
84 |
+
<p style="color:#7f8c8d; font-size: 12px;">Notify authorities of repeated issues via email or SMS.</p>
|
85 |
+
</div>
|
86 |
+
<!-- Functionality 4 -->
|
87 |
+
<div style="border: 2px solid #3498db; border-radius: 15px; padding: 20px; width: 150px; text-align: center;">
|
88 |
+
<h4 style="color:#2980b9;">Data Chat</h4>
|
89 |
+
<p style="color:#7f8c8d; font-size: 12px;">Enable real-time discussion between consumers and authorities.</p>
|
90 |
+
</div>
|
91 |
+
</div>
|
92 |
+
</div>
|
93 |
"""
|
94 |
|
95 |
+
# Create a Gradio interface
|
96 |
with gr.Blocks() as demo:
|
97 |
gr.HTML(html_content)
|
98 |
+
chatbot = gr.ChatInterface(fn=gradio_chat)
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
+
# Launch the interface
|
101 |
demo.launch()
|