init
Browse files
app.py
CHANGED
@@ -1,106 +1,53 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import pandas as pd
|
3 |
-
import google.generativeai as genai
|
4 |
-
import kagglehub
|
5 |
import os
|
|
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
path = os.path.join(path, dataset_file)
|
13 |
-
|
14 |
-
# Configure Google Gemini API
|
15 |
-
# gemapi = os.getenv("GeminiApi")
|
16 |
-
gemapi = "AIzaSyAmDOBWfGuEju0oZyUIcn_H0k8XW0cTP7k"
|
17 |
-
genai.configure(api_key=gemapi)
|
18 |
-
|
19 |
-
# Load the dataset
|
20 |
-
data = pd.read_csv(path)
|
21 |
-
|
22 |
-
# Define the system instructions for the model
|
23 |
-
system_instruction = f"""
|
24 |
-
You are a public assistant who specializes in food safety. You look at data and explain to the user any question they ask; here is your data: {str(data.to_json())}
|
25 |
-
You are also a food expert in the Indian context. You act as a representative of the government or public agencies, always keeping the needs of the people at the forefront.
|
26 |
-
You will try to help the customer launch a feedback review whenever they complain. You are to prepare a "markdown" report, which is detailed and can be sent to the company or restaurant.
|
27 |
-
In case of a complaint or a grievance, you will act like a detective gathering necessary information from the user until you are satisfied. Once you gather all the info, you are supposed to generate a markdown report.
|
28 |
-
Once the customer asks you to show them the markdown report, you will use the information given to you to generate it.
|
29 |
-
You will ask the customer a single question at a time, which is relevant, and you will not repeat another question until you've generated the report.
|
30 |
-
"""
|
31 |
-
|
32 |
-
# Initialize the model
|
33 |
-
model_path = "gemini-1.5-flash"
|
34 |
-
FoodSafetyAssistant = genai.GenerativeModel(model_path, system_instruction=system_instruction)
|
35 |
-
|
36 |
-
# Track chat history globally
|
37 |
-
chat_history = []
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
response = chat.send_message(usertxt)
|
46 |
-
|
47 |
-
# Append both user input and response to the chat history for context in the next interaction
|
48 |
-
chat_history.append({"role": "user", "content": usertxt})
|
49 |
-
chat_history.append({"role": "assistant", "content": response.text})
|
50 |
-
|
51 |
-
return response.text, chat_history
|
52 |
|
53 |
-
#
|
54 |
def gradio_chat(usertxt, chat_history):
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
html_content = """
|
58 |
-
<
|
59 |
-
|
60 |
-
<h1 style="color:#34495e;">Food Safety Assistant</h1>
|
61 |
-
<h3 style="color:#2c3e50;">Your AI-Powered Assistant for Food Safety</h3>
|
62 |
-
|
63 |
-
<!-- Short Intro About AI-Chat -->
|
64 |
-
<p style="color:#7f8c8d;">
|
65 |
-
Our platform allows consumers to report potential food safety violations, validate reports through AI, and notify local authorities. This proactive approach fosters community involvement in ensuring food integrity.
|
66 |
-
</p>
|
67 |
-
|
68 |
-
<!-- Core Functionalities Title -->
|
69 |
-
<h4 style="color:#e74c3c; text-align:center;">Core Functionalities</h4>
|
70 |
-
|
71 |
-
<!-- Functionality Boxes in a Flex Layout -->
|
72 |
-
<div style="display:flex; justify-content: space-around; align-items:center; margin-top:20px;">
|
73 |
-
<!-- Functionality 1 -->
|
74 |
-
<div style="border: 2px solid #3498db; border-radius: 15px; padding: 20px; width: 150px; text-align: center;">
|
75 |
-
<h4 style="color:#2980b9;">Report Issues</h4>
|
76 |
-
<p style="color:#7f8c8d; font-size: 12px;">Submit details like the restaurant name and the issue, anonymously.</p>
|
77 |
-
</div>
|
78 |
-
|
79 |
-
<!-- Functionality 2 -->
|
80 |
-
<div style="border: 2px solid #3498db; border-radius: 15px; padding: 20px; width: 150px; text-align: center;">
|
81 |
-
<h4 style="color:#2980b9;">AI Validation</h4>
|
82 |
-
<p style="color:#7f8c8d; font-size: 12px;">Validate reports using AI, ensuring accuracy and preventing duplicates.</p>
|
83 |
-
</div>
|
84 |
-
|
85 |
-
<!-- Functionality 3 -->
|
86 |
-
<div style="border: 2px solid #3498db; border-radius: 15px; padding: 20px; width: 150px; text-align: center;">
|
87 |
-
<h4 style="color:#2980b9;">Alerts</h4>
|
88 |
-
<p style="color:#7f8c8d; font-size: 12px;">Notify authorities of repeated issues via email or SMS.</p>
|
89 |
-
</div>
|
90 |
-
|
91 |
-
<!-- Functionality 4 -->
|
92 |
-
<div style="border: 2px solid #3498db; border-radius: 15px; padding: 20px; width: 150px; text-align: center;">
|
93 |
-
<h4 style="color:#2980b9;">Data Chat</h4>
|
94 |
-
<p style="color:#7f8c8d; font-size: 12px;">Enable real-time discussion between consumers and authorities.</p>
|
95 |
-
</div>
|
96 |
-
</div>
|
97 |
-
</div>
|
98 |
"""
|
99 |
|
100 |
-
#
|
101 |
with gr.Blocks() as demo:
|
102 |
gr.HTML(html_content)
|
103 |
-
chatbot = gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
# Launch the interface
|
106 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import kaggle
|
3 |
+
import google.generativeai as gemini
|
4 |
+
import gradio as gr
|
5 |
|
6 |
+
# Ensure that Kaggle API is authenticated correctly
|
7 |
+
try:
|
8 |
+
kaggle.api.authenticate()
|
9 |
+
except Exception as e:
|
10 |
+
print(f"Kaggle API authentication failed: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Ensure that the Google Gemini API key is set properly
|
13 |
+
gemini_api_key = os.getenv("GEMINI_API_KEY")
|
14 |
+
if not gemini_api_key:
|
15 |
+
print("Error: GEMINI_API_KEY environment variable is not set.")
|
16 |
+
else:
|
17 |
+
gemini.configure(api_key=gemini_api_key)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# Function to handle the chat interaction
|
20 |
def gradio_chat(usertxt, chat_history):
|
21 |
+
try:
|
22 |
+
# Initialize chat session with previous history
|
23 |
+
chat = gemini.ChatModel.start_chat(history=chat_history)
|
24 |
+
# Send user message to the Gemini model
|
25 |
+
response = chat.send_message(usertxt)
|
26 |
+
# Append user and assistant's responses to the chat history
|
27 |
+
chat_history.append({"role": "user", "content": usertxt})
|
28 |
+
chat_history.append({"role": "assistant", "content": response.text})
|
29 |
+
return chat_history, chat_history
|
30 |
+
except Exception as e:
|
31 |
+
error_message = f"Error occurred: {str(e)}"
|
32 |
+
chat_history.append({"role": "assistant", "content": error_message})
|
33 |
+
return chat_history, chat_history
|
34 |
+
|
35 |
+
# HTML content for Gradio interface (you can customize this as needed)
|
36 |
html_content = """
|
37 |
+
<h1>Food Safety Inspection Hub Prototype</h1>
|
38 |
+
<p>Chat with our AI-powered assistant to report food safety concerns and interact with authorities.</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
"""
|
40 |
|
41 |
+
# Define the Gradio interface
|
42 |
with gr.Blocks() as demo:
|
43 |
gr.HTML(html_content)
|
44 |
+
chatbot = gr.Chatbot()
|
45 |
+
user_input = gr.Textbox(placeholder="Enter your message here...")
|
46 |
+
chat_history = gr.State([])
|
47 |
+
submit_btn = gr.Button("Submit")
|
48 |
+
|
49 |
+
# When submit button is clicked, trigger the chat function
|
50 |
+
submit_btn.click(gradio_chat, inputs=[user_input, chat_history], outputs=[chatbot, chat_history])
|
51 |
|
52 |
+
# Launch the Gradio interface
|
53 |
demo.launch()
|