Spaces:
Running
Running
Update tasks/text.py
Browse files- tasks/text.py +29 -91
tasks/text.py
CHANGED
@@ -1,17 +1,15 @@
|
|
1 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
2 |
from fastapi import APIRouter
|
3 |
from datetime import datetime
|
4 |
from datasets import load_dataset
|
5 |
from sklearn.metrics import accuracy_score
|
6 |
-
import
|
7 |
-
from torch.utils.data import Dataset, DataLoader
|
8 |
|
9 |
from .utils.evaluation import TextEvaluationRequest
|
10 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
11 |
|
12 |
router = APIRouter()
|
13 |
|
14 |
-
DESCRIPTION = "
|
15 |
ROUTE = "/text"
|
16 |
|
17 |
@router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION)
|
@@ -48,92 +46,32 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
48 |
tracker.start()
|
49 |
tracker.start_task("inference")
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
labels = test_dataset["label"]
|
55 |
-
|
56 |
-
# Load model and tokenizer from local directory
|
57 |
-
model_dir = "./"
|
58 |
-
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
59 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_dir)
|
60 |
-
|
61 |
-
# Define dataset class
|
62 |
-
class TextDataset(Dataset):
|
63 |
-
def __init__(self, texts, labels, tokenizer, max_len=128):
|
64 |
-
self.texts = texts
|
65 |
-
self.labels = labels
|
66 |
-
self.tokenizer = tokenizer
|
67 |
-
self.max_len = max_len
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
test_loader = DataLoader(test_dataset, batch_size=16)
|
91 |
-
|
92 |
-
# Model inference
|
93 |
-
model.eval()
|
94 |
-
predictions = []
|
95 |
-
ground_truth = []
|
96 |
-
device = 'cpu'
|
97 |
-
|
98 |
-
with torch.no_grad():
|
99 |
-
for batch in test_loader:
|
100 |
-
input_ids = batch['input_ids'].to(device)
|
101 |
-
attention_mask = batch['attention_mask'].to(device)
|
102 |
-
labels = batch['labels'].to(device)
|
103 |
-
|
104 |
-
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
105 |
-
_, predicted = torch.max(outputs.logits, 1)
|
106 |
-
|
107 |
-
predictions.extend(predicted.cpu().numpy())
|
108 |
-
ground_truth.extend(labels.cpu().numpy())
|
109 |
-
|
110 |
-
# Stop tracking emissions
|
111 |
-
emissions_data = tracker.stop_task()
|
112 |
-
|
113 |
-
# Calculate accuracy
|
114 |
-
accuracy = accuracy_score(test_dataset["label"], predictions)
|
115 |
-
|
116 |
-
# Prepare results
|
117 |
-
results = {
|
118 |
-
"username": username,
|
119 |
-
"space_url": space_url,
|
120 |
-
"submission_timestamp": datetime.now().isoformat(),
|
121 |
-
"model_description": DESCRIPTION,
|
122 |
-
"accuracy": float(accuracy),
|
123 |
-
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
124 |
-
"emissions_gco2eq": emissions_data.emissions * 1000,
|
125 |
-
"emissions_data": clean_emissions_data(emissions_data),
|
126 |
-
"api_route": ROUTE,
|
127 |
-
"dataset_config": {
|
128 |
-
"dataset_name": request.dataset_name,
|
129 |
-
"test_size": request.test_size,
|
130 |
-
"test_seed": request.test_seed
|
131 |
-
}
|
132 |
}
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
except Exception as e:
|
137 |
-
# Stop tracking in case of error
|
138 |
-
tracker.stop_task()
|
139 |
-
raise e
|
|
|
|
|
1 |
from fastapi import APIRouter
|
2 |
from datetime import datetime
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
+
import random
|
|
|
6 |
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
10 |
router = APIRouter()
|
11 |
|
12 |
+
DESCRIPTION = "Random Baseline"
|
13 |
ROUTE = "/text"
|
14 |
|
15 |
@router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION)
|
|
|
46 |
tracker.start()
|
47 |
tracker.start_task("inference")
|
48 |
|
49 |
+
# Get true labels
|
50 |
+
true_labels = test_dataset["label"]
|
51 |
+
predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
# Stop tracking emissions
|
54 |
+
emissions_data = tracker.stop_task()
|
55 |
+
|
56 |
+
# Calculate accuracy
|
57 |
+
accuracy = accuracy_score(true_labels, predictions)
|
58 |
+
|
59 |
+
# Prepare results dictionary
|
60 |
+
results = {
|
61 |
+
"username": username,
|
62 |
+
"space_url": space_url,
|
63 |
+
"submission_timestamp": datetime.now().isoformat(),
|
64 |
+
"model_description": DESCRIPTION,
|
65 |
+
"accuracy": float(accuracy),
|
66 |
+
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
67 |
+
"emissions_gco2eq": emissions_data.emissions * 1000,
|
68 |
+
"emissions_data": clean_emissions_data(emissions_data),
|
69 |
+
"api_route": ROUTE,
|
70 |
+
"dataset_config": {
|
71 |
+
"dataset_name": request.dataset_name,
|
72 |
+
"test_size": request.test_size,
|
73 |
+
"test_seed": request.test_seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
}
|
75 |
+
}
|
76 |
+
|
77 |
+
return results
|
|
|
|
|
|
|
|