Spaces:
Running
Running
Update tasks/text.py
Browse files- tasks/text.py +65 -76
tasks/text.py
CHANGED
@@ -1,32 +1,20 @@
|
|
1 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
2 |
-
from fastapi import
|
3 |
-
from fastapi.middleware.cors import CORSMiddleware
|
4 |
from datetime import datetime
|
5 |
from datasets import load_dataset
|
6 |
from sklearn.metrics import accuracy_score
|
7 |
import torch
|
8 |
-
import
|
9 |
|
10 |
from .utils.evaluation import TextEvaluationRequest
|
11 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
12 |
|
13 |
-
# Initialize FastAPI app and router
|
14 |
-
app = FastAPI()
|
15 |
router = APIRouter()
|
16 |
|
17 |
-
|
18 |
-
app.add_middleware(
|
19 |
-
CORSMiddleware,
|
20 |
-
allow_origins=["*"],
|
21 |
-
allow_credentials=True,
|
22 |
-
allow_methods=["*"],
|
23 |
-
allow_headers=["*"],
|
24 |
-
)
|
25 |
-
|
26 |
-
DESCRIPTION = "Efficient Climate Disinformation Detection"
|
27 |
ROUTE = "/text"
|
28 |
|
29 |
-
@router.post(
|
30 |
async def evaluate_text(request: TextEvaluationRequest):
|
31 |
"""
|
32 |
Evaluate text classification for climate disinformation detection.
|
@@ -48,7 +36,11 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
48 |
|
49 |
# Load and prepare the dataset
|
50 |
dataset = load_dataset(request.dataset_name)
|
|
|
|
|
51 |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
|
|
|
|
52 |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
53 |
test_dataset = train_test["test"]
|
54 |
|
@@ -57,65 +49,69 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
57 |
tracker.start_task("inference")
|
58 |
|
59 |
try:
|
60 |
-
#
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
67 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
model.eval()
|
81 |
-
|
82 |
-
# Get test texts
|
83 |
-
test_texts = test_dataset["quote"]
|
84 |
predictions = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
if torch.cuda.is_available():
|
89 |
-
torch.cuda.empty_cache()
|
90 |
-
|
91 |
-
batch_texts = test_texts[i:i + BATCH_SIZE]
|
92 |
-
|
93 |
-
# Tokenize batch
|
94 |
-
inputs = tokenizer(
|
95 |
-
batch_texts,
|
96 |
-
padding=True,
|
97 |
-
truncation=True,
|
98 |
-
max_length=MAX_LENGTH,
|
99 |
-
return_tensors="pt"
|
100 |
-
)
|
101 |
-
|
102 |
-
# Move inputs to device
|
103 |
-
inputs = {k: v.to(device) for k, v in inputs.items()}
|
104 |
-
|
105 |
-
# Run inference
|
106 |
-
with torch.no_grad(), torch.cuda.amp.autocast(enabled=torch.cuda.is_available()):
|
107 |
-
outputs = model(**inputs)
|
108 |
-
batch_preds = torch.argmax(outputs.logits, dim=1)
|
109 |
-
predictions.extend(batch_preds.cpu().numpy())
|
110 |
-
|
111 |
-
# Get true labels
|
112 |
-
true_labels = test_dataset['label']
|
113 |
|
114 |
# Stop tracking emissions
|
115 |
emissions_data = tracker.stop_task()
|
116 |
|
117 |
# Calculate accuracy
|
118 |
-
accuracy = accuracy_score(
|
119 |
|
120 |
# Prepare results
|
121 |
results = {
|
@@ -138,13 +134,6 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
138 |
return results
|
139 |
|
140 |
except Exception as e:
|
|
|
141 |
tracker.stop_task()
|
142 |
-
raise e
|
143 |
-
|
144 |
-
# Include the router
|
145 |
-
app.include_router(router)
|
146 |
-
|
147 |
-
# Add a health check endpoint
|
148 |
-
@app.get("/health")
|
149 |
-
async def health_check():
|
150 |
-
return {"status": "healthy"}
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
2 |
+
from fastapi import APIRouter
|
|
|
3 |
from datetime import datetime
|
4 |
from datasets import load_dataset
|
5 |
from sklearn.metrics import accuracy_score
|
6 |
import torch
|
7 |
+
from torch.utils.data import Dataset, DataLoader
|
8 |
|
9 |
from .utils.evaluation import TextEvaluationRequest
|
10 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
11 |
|
|
|
|
|
12 |
router = APIRouter()
|
13 |
|
14 |
+
DESCRIPTION = "Climate Disinformation Detection"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
ROUTE = "/text"
|
16 |
|
17 |
+
@router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION)
|
18 |
async def evaluate_text(request: TextEvaluationRequest):
|
19 |
"""
|
20 |
Evaluate text classification for climate disinformation detection.
|
|
|
36 |
|
37 |
# Load and prepare the dataset
|
38 |
dataset = load_dataset(request.dataset_name)
|
39 |
+
|
40 |
+
# Convert string labels to integers
|
41 |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
42 |
+
|
43 |
+
# Split dataset
|
44 |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
45 |
test_dataset = train_test["test"]
|
46 |
|
|
|
49 |
tracker.start_task("inference")
|
50 |
|
51 |
try:
|
52 |
+
# Get texts and labels
|
53 |
+
texts = test_dataset["quote"]
|
54 |
+
labels = test_dataset["label"]
|
55 |
+
|
56 |
+
# Load model and tokenizer from local directory
|
57 |
+
model_dir = "./"
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
59 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_dir)
|
60 |
+
|
61 |
+
# Define dataset class
|
62 |
+
class TextDataset(Dataset):
|
63 |
+
def __init__(self, texts, labels, tokenizer, max_len=128):
|
64 |
+
self.texts = texts
|
65 |
+
self.labels = labels
|
66 |
+
self.tokenizer = tokenizer
|
67 |
+
self.max_len = max_len
|
68 |
+
|
69 |
+
def __len__(self):
|
70 |
+
return len(self.texts)
|
71 |
+
|
72 |
+
def __getitem__(self, idx):
|
73 |
+
text = self.texts[idx]
|
74 |
+
label = self.labels[idx]
|
75 |
+
encodings = self.tokenizer(
|
76 |
+
text,
|
77 |
+
max_length=self.max_len,
|
78 |
+
padding='max_length',
|
79 |
+
truncation=True,
|
80 |
+
return_tensors="pt"
|
81 |
+
)
|
82 |
+
return {
|
83 |
+
'input_ids': encodings['input_ids'].squeeze(0),
|
84 |
+
'attention_mask': encodings['attention_mask'].squeeze(0),
|
85 |
+
'labels': torch.tensor(label, dtype=torch.long)
|
86 |
+
}
|
87 |
+
|
88 |
+
# Create dataset and dataloader
|
89 |
+
test_dataset = TextDataset(texts, labels, tokenizer)
|
90 |
+
test_loader = DataLoader(test_dataset, batch_size=16)
|
91 |
+
|
92 |
+
# Model inference
|
93 |
model.eval()
|
|
|
|
|
|
|
94 |
predictions = []
|
95 |
+
ground_truth = []
|
96 |
+
device = 'cpu'
|
97 |
+
|
98 |
+
with torch.no_grad():
|
99 |
+
for batch in test_loader:
|
100 |
+
input_ids = batch['input_ids'].to(device)
|
101 |
+
attention_mask = batch['attention_mask'].to(device)
|
102 |
+
labels = batch['labels'].to(device)
|
103 |
+
|
104 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
105 |
+
_, predicted = torch.max(outputs.logits, 1)
|
106 |
|
107 |
+
predictions.extend(predicted.cpu().numpy())
|
108 |
+
ground_truth.extend(labels.cpu().numpy())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
# Stop tracking emissions
|
111 |
emissions_data = tracker.stop_task()
|
112 |
|
113 |
# Calculate accuracy
|
114 |
+
accuracy = accuracy_score(test_dataset["label"], predictions)
|
115 |
|
116 |
# Prepare results
|
117 |
results = {
|
|
|
134 |
return results
|
135 |
|
136 |
except Exception as e:
|
137 |
+
# Stop tracking in case of error
|
138 |
tracker.stop_task()
|
139 |
+
raise e
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|