Spaces:
Running
Running
Update tasks/text.py
Browse files- tasks/text.py +83 -29
tasks/text.py
CHANGED
@@ -1,15 +1,18 @@
|
|
|
|
1 |
from fastapi import APIRouter
|
2 |
from datetime import datetime
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
-
import random
|
6 |
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
|
|
|
|
|
|
10 |
router = APIRouter()
|
11 |
|
12 |
-
DESCRIPTION = "
|
13 |
ROUTE = "/text"
|
14 |
|
15 |
@router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION)
|
@@ -46,32 +49,83 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
46 |
tracker.start()
|
47 |
tracker.start_task("inference")
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
"
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
"
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
}
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
2 |
from fastapi import APIRouter
|
3 |
from datetime import datetime
|
4 |
from datasets import load_dataset
|
5 |
from sklearn.metrics import accuracy_score
|
|
|
6 |
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
|
13 |
router = APIRouter()
|
14 |
|
15 |
+
DESCRIPTION = "FrugalDisinfoHunter Model"
|
16 |
ROUTE = "/text"
|
17 |
|
18 |
@router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION)
|
|
|
49 |
tracker.start()
|
50 |
tracker.start_task("inference")
|
51 |
|
52 |
+
try:
|
53 |
+
# Model configuration
|
54 |
+
model_name = "Zen0/FrugalDisinfoHunter" # Model path
|
55 |
+
tokenizer_name = "google/mobilebert-uncased" # Base MobileBERT tokenizer
|
56 |
+
BATCH_SIZE = 32 # Batch size for efficient processing
|
57 |
+
MAX_LENGTH = 128 # Maximum sequence length
|
58 |
|
59 |
+
# Initialize model and tokenizer
|
60 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
61 |
+
model_name,
|
62 |
+
num_labels=8,
|
63 |
+
output_hidden_states=True,
|
64 |
+
problem_type="single_label_classification"
|
65 |
+
)
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
67 |
+
|
68 |
+
# Move model to appropriate device
|
69 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
70 |
+
model = model.to(device)
|
71 |
+
model.eval() # Set model to evaluation mode
|
72 |
+
|
73 |
+
# Get test texts
|
74 |
+
test_texts = test_dataset["quote"]
|
75 |
+
predictions = []
|
76 |
+
|
77 |
+
# Process in batches
|
78 |
+
for i in range(0, len(test_texts), BATCH_SIZE):
|
79 |
+
batch_texts = test_texts[i:i + BATCH_SIZE]
|
80 |
+
|
81 |
+
# Tokenize batch
|
82 |
+
inputs = tokenizer(
|
83 |
+
batch_texts,
|
84 |
+
padding=True,
|
85 |
+
truncation=True,
|
86 |
+
return_tensors="pt",
|
87 |
+
max_length=MAX_LENGTH
|
88 |
+
)
|
89 |
+
|
90 |
+
# Move inputs to device
|
91 |
+
inputs = {key: val.to(device) for key, val in inputs.items()}
|
92 |
+
|
93 |
+
# Run inference
|
94 |
+
with torch.no_grad():
|
95 |
+
outputs = model(**inputs)
|
96 |
+
batch_preds = torch.argmax(outputs.logits, dim=1)
|
97 |
+
predictions.extend(batch_preds.cpu().numpy())
|
98 |
+
|
99 |
+
# Get true labels
|
100 |
+
true_labels = test_dataset['label']
|
101 |
+
|
102 |
+
# Stop tracking emissions
|
103 |
+
emissions_data = tracker.stop_task()
|
104 |
+
|
105 |
+
# Calculate accuracy
|
106 |
+
accuracy = accuracy_score(true_labels, predictions)
|
107 |
+
|
108 |
+
# Prepare results dictionary
|
109 |
+
results = {
|
110 |
+
"username": username,
|
111 |
+
"space_url": space_url,
|
112 |
+
"submission_timestamp": datetime.now().isoformat(),
|
113 |
+
"model_description": DESCRIPTION,
|
114 |
+
"accuracy": float(accuracy),
|
115 |
+
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
116 |
+
"emissions_gco2eq": emissions_data.emissions * 1000,
|
117 |
+
"emissions_data": clean_emissions_data(emissions_data),
|
118 |
+
"api_route": ROUTE,
|
119 |
+
"dataset_config": {
|
120 |
+
"dataset_name": request.dataset_name,
|
121 |
+
"test_size": request.test_size,
|
122 |
+
"test_seed": request.test_seed
|
123 |
+
}
|
124 |
}
|
125 |
+
|
126 |
+
return results
|
127 |
+
|
128 |
+
except Exception as e:
|
129 |
+
# Stop tracking in case of error
|
130 |
+
tracker.stop_task()
|
131 |
+
raise e
|