Spaces:
Runtime error
Runtime error
import torch | |
from torch.nn import functional as F | |
import numpy as np | |
import math | |
class PlaceHolder: | |
def __init__(self, X, E, y): | |
self.X = X | |
self.E = E | |
self.y = y | |
def type_as(self, x: torch.Tensor): | |
""" Changes the device and dtype of X, E, y. """ | |
self.X = self.X.type_as(x) | |
self.E = self.E.type_as(x) | |
self.y = self.y.type_as(x) | |
return self | |
def mask(self, node_mask, collapse=False): | |
x_mask = node_mask.unsqueeze(-1) # bs, n, 1 | |
e_mask1 = x_mask.unsqueeze(2) # bs, n, 1, 1 | |
e_mask2 = x_mask.unsqueeze(1) # bs, 1, n, 1 | |
if collapse: | |
self.X = torch.argmax(self.X, dim=-1) | |
self.E = torch.argmax(self.E, dim=-1) | |
self.X[node_mask == 0] = - 1 | |
self.E[(e_mask1 * e_mask2).squeeze(-1) == 0] = - 1 | |
else: | |
self.X = self.X * x_mask | |
self.E = self.E * e_mask1 * e_mask2 | |
assert torch.allclose(self.E, torch.transpose(self.E, 1, 2)) | |
return self | |
def setup_wandb(cfg): | |
config_dict = omegaconf.OmegaConf.to_container(cfg, resolve=True, throw_on_missing=True) | |
kwargs = {'name': cfg.general.name, 'project': f'graph_ddm_{cfg.dataset.name}', 'config': config_dict, | |
'settings': wandb.Settings(_disable_stats=True), 'reinit': True, 'mode': cfg.general.wandb} | |
wandb.init(**kwargs) | |
wandb.save('*.txt') | |
def sum_except_batch(x): | |
return x.reshape(x.size(0), -1).sum(dim=-1) | |
def assert_correctly_masked(variable, node_mask): | |
assert (variable * (1 - node_mask.long())).abs().max().item() < 1e-4, \ | |
'Variables not masked properly.' | |
def sample_gaussian(size): | |
x = torch.randn(size) | |
return x | |
def sample_gaussian_with_mask(size, node_mask): | |
x = torch.randn(size) | |
x = x.type_as(node_mask.float()) | |
x_masked = x * node_mask | |
return x_masked | |
def clip_noise_schedule(alphas2, clip_value=0.001): | |
""" | |
For a noise schedule given by alpha^2, this clips alpha_t / alpha_t-1. This may help improve stability during | |
sampling. | |
""" | |
alphas2 = np.concatenate([np.ones(1), alphas2], axis=0) | |
alphas_step = (alphas2[1:] / alphas2[:-1]) | |
alphas_step = np.clip(alphas_step, a_min=clip_value, a_max=1.) | |
alphas2 = np.cumprod(alphas_step, axis=0) | |
return alphas2 | |
def cosine_beta_schedule(timesteps, s=0.008, raise_to_power: float = 1): | |
""" | |
cosine schedule | |
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ | |
""" | |
steps = timesteps + 2 | |
x = np.linspace(0, steps, steps) | |
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2 | |
alphas_cumprod = alphas_cumprod / alphas_cumprod[0] | |
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) | |
betas = np.clip(betas, a_min=0, a_max=0.999) | |
alphas = 1. - betas | |
alphas_cumprod = np.cumprod(alphas, axis=0) | |
if raise_to_power != 1: | |
alphas_cumprod = np.power(alphas_cumprod, raise_to_power) | |
return alphas_cumprod | |
def cosine_beta_schedule_discrete(timesteps, s=0.008): | |
""" Cosine schedule as proposed in https://openreview.net/forum?id=-NEXDKk8gZ. """ | |
steps = timesteps + 2 | |
x = np.linspace(0, steps, steps) | |
alphas_cumprod = np.cos(0.5 * np.pi * ((x / steps) + s) / (1 + s)) ** 2 | |
alphas_cumprod = alphas_cumprod / alphas_cumprod[0] | |
alphas = (alphas_cumprod[1:] / alphas_cumprod[:-1]) | |
betas = 1 - alphas | |
return betas.squeeze() | |
def custom_beta_schedule_discrete(timesteps, average_num_nodes=50, s=0.008): | |
""" Cosine schedule as proposed in https://openreview.net/forum?id=-NEXDKk8gZ. """ | |
steps = timesteps + 2 | |
x = np.linspace(0, steps, steps) | |
alphas_cumprod = np.cos(0.5 * np.pi * ((x / steps) + s) / (1 + s)) ** 2 | |
alphas_cumprod = alphas_cumprod / alphas_cumprod[0] | |
alphas = (alphas_cumprod[1:] / alphas_cumprod[:-1]) | |
betas = 1 - alphas | |
assert timesteps >= 100 | |
p = 4 / 5 # 1 - 1 / num_edge_classes | |
num_edges = average_num_nodes * (average_num_nodes - 1) / 2 | |
# First 100 steps: only a few updates per graph | |
updates_per_graph = 1.2 | |
beta_first = updates_per_graph / (p * num_edges) | |
betas[betas < beta_first] = beta_first | |
return np.array(betas) | |
def gaussian_KL(q_mu, q_sigma): | |
"""Computes the KL distance between a normal distribution and the standard normal. | |
Args: | |
q_mu: Mean of distribution q. | |
q_sigma: Standard deviation of distribution q. | |
p_mu: Mean of distribution p. | |
p_sigma: Standard deviation of distribution p. | |
Returns: | |
The KL distance, summed over all dimensions except the batch dim. | |
""" | |
return sum_except_batch((torch.log(1 / q_sigma) + 0.5 * (q_sigma ** 2 + q_mu ** 2) - 0.5)) | |
def cdf_std_gaussian(x): | |
return 0.5 * (1. + torch.erf(x / math.sqrt(2))) | |
def SNR(gamma): | |
"""Computes signal to noise ratio (alpha^2/sigma^2) given gamma.""" | |
return torch.exp(-gamma) | |
def inflate_batch_array(array, target_shape): | |
""" | |
Inflates the batch array (array) with only a single axis (i.e. shape = (batch_size,), or possibly more empty | |
axes (i.e. shape (batch_size, 1, ..., 1)) to match the target shape. | |
""" | |
target_shape = (array.size(0),) + (1,) * (len(target_shape) - 1) | |
return array.view(target_shape) | |
def sigma(gamma, target_shape): | |
"""Computes sigma given gamma.""" | |
return inflate_batch_array(torch.sqrt(torch.sigmoid(gamma)), target_shape) | |
def alpha(gamma, target_shape): | |
"""Computes alpha given gamma.""" | |
return inflate_batch_array(torch.sqrt(torch.sigmoid(-gamma)), target_shape) | |
def check_mask_correct(variables, node_mask): | |
for i, variable in enumerate(variables): | |
if len(variable) > 0: | |
assert_correctly_masked(variable, node_mask) | |
def check_tensor_same_size(*args): | |
for i, arg in enumerate(args): | |
if i == 0: | |
continue | |
assert args[0].size() == arg.size() | |
def sigma_and_alpha_t_given_s(gamma_t: torch.Tensor, gamma_s: torch.Tensor, target_size: torch.Size): | |
""" | |
Computes sigma t given s, using gamma_t and gamma_s. Used during sampling. | |
These are defined as: | |
alpha t given s = alpha t / alpha s, | |
sigma t given s = sqrt(1 - (alpha t given s) ^2 ). | |
""" | |
sigma2_t_given_s = inflate_batch_array( | |
-torch.expm1(F.softplus(gamma_s) - F.softplus(gamma_t)), target_size | |
) | |
# alpha_t_given_s = alpha_t / alpha_s | |
log_alpha2_t = F.logsigmoid(-gamma_t) | |
log_alpha2_s = F.logsigmoid(-gamma_s) | |
log_alpha2_t_given_s = log_alpha2_t - log_alpha2_s | |
alpha_t_given_s = torch.exp(0.5 * log_alpha2_t_given_s) | |
alpha_t_given_s = inflate_batch_array(alpha_t_given_s, target_size) | |
sigma_t_given_s = torch.sqrt(sigma2_t_given_s) | |
return sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s | |
def reverse_tensor(x): | |
return x[torch.arange(x.size(0) - 1, -1, -1)] | |
def sample_feature_noise(X_size, E_size, y_size, node_mask): | |
"""Standard normal noise for all features. | |
Output size: X.size(), E.size(), y.size() """ | |
# TODO: How to change this for the multi-gpu case? | |
epsX = sample_gaussian(X_size) | |
epsE = sample_gaussian(E_size) | |
epsy = sample_gaussian(y_size) | |
float_mask = node_mask.float() | |
epsX = epsX.type_as(float_mask) | |
epsE = epsE.type_as(float_mask) | |
epsy = epsy.type_as(float_mask) | |
# Get upper triangular part of edge noise, without main diagonal | |
upper_triangular_mask = torch.zeros_like(epsE) | |
indices = torch.triu_indices(row=epsE.size(1), col=epsE.size(2), offset=1) | |
upper_triangular_mask[:, indices[0], indices[1], :] = 1 | |
epsE = epsE * upper_triangular_mask | |
epsE = (epsE + torch.transpose(epsE, 1, 2)) | |
assert (epsE == torch.transpose(epsE, 1, 2)).all() | |
return PlaceHolder(X=epsX, E=epsE, y=epsy).mask(node_mask) | |
def sample_normal(mu_X, mu_E, mu_y, sigma, node_mask): | |
"""Samples from a Normal distribution.""" | |
# TODO: change for multi-gpu case | |
eps = sample_feature_noise(mu_X.size(), mu_E.size(), mu_y.size(), node_mask).type_as(mu_X) | |
X = mu_X + sigma * eps.X | |
E = mu_E + sigma.unsqueeze(1) * eps.E | |
y = mu_y + sigma.squeeze(1) * eps.y | |
return PlaceHolder(X=X, E=E, y=y) | |
def check_issues_norm_values(gamma, norm_val1, norm_val2, num_stdevs=8): | |
""" Check if 1 / norm_value is still larger than 10 * standard deviation. """ | |
zeros = torch.zeros((1, 1)) | |
gamma_0 = gamma(zeros) | |
sigma_0 = sigma(gamma_0, target_shape=zeros.size()).item() | |
max_norm_value = max(norm_val1, norm_val2) | |
if sigma_0 * num_stdevs > 1. / max_norm_value: | |
raise ValueError( | |
f'Value for normalization value {max_norm_value} probably too ' | |
f'large with sigma_0 {sigma_0:.5f} and ' | |
f'1 / norm_value = {1. / max_norm_value}') | |
def sample_discrete_features(probX, probE, node_mask): | |
''' Sample features from multinomial distribution with given probabilities (probX, probE, proby) | |
:param probX: bs, n, dx_out node features | |
:param probE: bs, n, n, de_out edge features | |
:param proby: bs, dy_out global features. | |
''' | |
bs, n, _ = probX.shape | |
# Noise X | |
# The masked rows should define probability distributions as well | |
probX[~node_mask] = 1 / probX.shape[-1] | |
# Flatten the probability tensor to sample with multinomial | |
probX = probX.reshape(bs * n, -1) # (bs * n, dx_out) | |
# Sample X | |
X_t = probX.multinomial(1) # (bs * n, 1) | |
X_t = X_t.reshape(bs, n) # (bs, n) | |
# Noise E | |
# The masked rows should define probability distributions as well | |
inverse_edge_mask = ~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2)) | |
diag_mask = torch.eye(n).unsqueeze(0).expand(bs, -1, -1) | |
probE[inverse_edge_mask] = 1 / probE.shape[-1] | |
probE[diag_mask.bool()] = 1 / probE.shape[-1] | |
probE = probE.reshape(bs * n * n, -1) # (bs * n * n, de_out) | |
# Sample E | |
E_t = probE.multinomial(1).reshape(bs, n, n) # (bs, n, n) | |
E_t = torch.triu(E_t, diagonal=1) | |
E_t = (E_t + torch.transpose(E_t, 1, 2)) | |
return PlaceHolder(X=X_t, E=E_t, y=torch.zeros(bs, 0).type_as(X_t)) | |
def compute_posterior_distribution(M, M_t, Qt_M, Qsb_M, Qtb_M): | |
''' M: X or E | |
Compute xt @ Qt.T * x0 @ Qsb / x0 @ Qtb @ xt.T | |
''' | |
# Flatten feature tensors | |
M = M.flatten(start_dim=1, end_dim=-2).to(torch.float32) # (bs, N, d) with N = n or n * n | |
M_t = M_t.flatten(start_dim=1, end_dim=-2).to(torch.float32) # same | |
Qt_M_T = torch.transpose(Qt_M, -2, -1) # (bs, d, d) | |
left_term = M_t @ Qt_M_T # (bs, N, d) | |
right_term = M @ Qsb_M # (bs, N, d) | |
product = left_term * right_term # (bs, N, d) | |
denom = M @ Qtb_M # (bs, N, d) @ (bs, d, d) = (bs, N, d) | |
denom = (denom * M_t).sum(dim=-1) # (bs, N, d) * (bs, N, d) + sum = (bs, N) | |
# denom = product.sum(dim=-1) | |
# denom[denom == 0.] = 1 | |
prob = product / denom.unsqueeze(-1) # (bs, N, d) | |
return prob | |
def compute_batched_over0_posterior_distribution(X_t, Qt, Qsb, Qtb): | |
""" M: X or E | |
Compute xt @ Qt.T * x0 @ Qsb / x0 @ Qtb @ xt.T for each possible value of x0 | |
X_t: bs, n, dt or bs, n, n, dt | |
Qt: bs, d_t-1, dt | |
Qsb: bs, d0, d_t-1 | |
Qtb: bs, d0, dt. | |
""" | |
# Flatten feature tensors | |
# Careful with this line. It does nothing if X is a node feature. If X is an edge features it maps to | |
# bs x (n ** 2) x d | |
X_t = X_t.flatten(start_dim=1, end_dim=-2).to(torch.float32) # bs x N x dt | |
Qt_T = Qt.transpose(-1, -2) # bs, dt, d_t-1 | |
left_term = X_t @ Qt_T # bs, N, d_t-1 | |
left_term = left_term.unsqueeze(dim=2) # bs, N, 1, d_t-1 | |
right_term = Qsb.unsqueeze(1) # bs, 1, d0, d_t-1 | |
numerator = left_term * right_term # bs, N, d0, d_t-1 | |
X_t_transposed = X_t.transpose(-1, -2) # bs, dt, N | |
prod = Qtb @ X_t_transposed # bs, d0, N | |
prod = prod.transpose(-1, -2) # bs, N, d0 | |
denominator = prod.unsqueeze(-1) # bs, N, d0, 1 | |
denominator[denominator == 0] = 1e-6 | |
out = numerator / denominator | |
return out | |
def mask_distributions(true_X, true_E, pred_X, pred_E, node_mask): | |
""" | |
Set masked rows to arbitrary distributions, so it doesn't contribute to loss | |
:param true_X: bs, n, dx_out | |
:param true_E: bs, n, n, de_out | |
:param pred_X: bs, n, dx_out | |
:param pred_E: bs, n, n, de_out | |
:param node_mask: bs, n | |
:return: same sizes as input | |
""" | |
row_X = torch.zeros(true_X.size(-1), dtype=torch.float, device=true_X.device) | |
row_X[0] = 1. | |
row_E = torch.zeros(true_E.size(-1), dtype=torch.float, device=true_E.device) | |
row_E[0] = 1. | |
diag_mask = ~torch.eye(node_mask.size(1), device=node_mask.device, dtype=torch.bool).unsqueeze(0) | |
true_X[~node_mask] = row_X | |
pred_X[~node_mask] = row_X | |
true_E[~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2) * diag_mask), :] = row_E | |
pred_E[~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2) * diag_mask), :] = row_E | |
true_X = true_X + 1e-7 | |
pred_X = pred_X + 1e-7 | |
true_E = true_E + 1e-7 | |
pred_E = pred_E + 1e-7 | |
true_X = true_X / torch.sum(true_X, dim=-1, keepdim=True) | |
pred_X = pred_X / torch.sum(pred_X, dim=-1, keepdim=True) | |
true_E = true_E / torch.sum(true_E, dim=-1, keepdim=True) | |
pred_E = pred_E / torch.sum(pred_E, dim=-1, keepdim=True) | |
return true_X, true_E, pred_X, pred_E | |
def posterior_distributions(X, E, y, X_t, E_t, y_t, Qt, Qsb, Qtb): | |
prob_X = compute_posterior_distribution(M=X, M_t=X_t, Qt_M=Qt.X, Qsb_M=Qsb.X, Qtb_M=Qtb.X) # (bs, n, dx) | |
prob_E = compute_posterior_distribution(M=E, M_t=E_t, Qt_M=Qt.E, Qsb_M=Qsb.E, Qtb_M=Qtb.E) # (bs, n * n, de) | |
return PlaceHolder(X=prob_X, E=prob_E, y=y_t) | |
def sample_discrete_feature_noise(limit_dist, node_mask, transition): | |
""" Sample from the limit distribution of the diffusion process""" | |
bs, n_max = node_mask.shape | |
x_limit = limit_dist.X[None, None, :].expand(bs, n_max, -1) | |
e_limit = limit_dist.E[None, None, None, :].expand(bs, n_max, n_max, -1) | |
y_limit = limit_dist.y[None, :].expand(bs, -1) | |
U_X = x_limit.flatten(end_dim=-2).multinomial(1).reshape(bs, n_max) | |
U_E = e_limit.flatten(end_dim=-2).multinomial(1).reshape(bs, n_max, n_max) | |
# print(U_E.shape, U_X.shape, y_limit.shape) | |
U_y = torch.empty((bs, 0)) | |
long_mask = node_mask.long() | |
U_X = U_X.type_as(long_mask) | |
U_E = U_E.type_as(long_mask) | |
U_y = U_y.type_as(long_mask) | |
U_X = F.one_hot(U_X, num_classes=x_limit.shape[-1]).float() | |
U_E = F.one_hot(U_E, num_classes=e_limit.shape[-1]).float() | |
# Get upper triangular part of edge noise, without main diagonal | |
upper_triangular_mask = torch.zeros_like(U_E) | |
indices = torch.triu_indices(row=U_E.size(1), col=U_E.size(2), offset=1) | |
upper_triangular_mask[:, indices[0], indices[1], :] = 1 | |
U_E = U_E * upper_triangular_mask | |
U_E = (U_E + torch.transpose(U_E, 1, 2)) | |
assert (U_E == torch.transpose(U_E, 1, 2)).all() | |
# print(U_X.shape, limit_dist.cond.shape) | |
return PlaceHolder(X=U_X, E=U_E, y=U_y).mask(node_mask) | |