File size: 15,344 Bytes
6b59850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import torch
from torch.nn import functional as F
import numpy as np
import math



class PlaceHolder:
    def __init__(self, X, E, y):
        self.X = X
        self.E = E
        self.y = y

    def type_as(self, x: torch.Tensor):
        """ Changes the device and dtype of X, E, y. """
        self.X = self.X.type_as(x)
        self.E = self.E.type_as(x)
        self.y = self.y.type_as(x)
        return self

    def mask(self, node_mask, collapse=False):
        x_mask = node_mask.unsqueeze(-1)          # bs, n, 1
        e_mask1 = x_mask.unsqueeze(2)             # bs, n, 1, 1
        e_mask2 = x_mask.unsqueeze(1)             # bs, 1, n, 1

        if collapse:
            self.X = torch.argmax(self.X, dim=-1)
            self.E = torch.argmax(self.E, dim=-1)

            self.X[node_mask == 0] = - 1
            self.E[(e_mask1 * e_mask2).squeeze(-1) == 0] = - 1
        else:
            self.X = self.X * x_mask
            self.E = self.E * e_mask1 * e_mask2
            assert torch.allclose(self.E, torch.transpose(self.E, 1, 2))
        return self
    
def setup_wandb(cfg):
    config_dict = omegaconf.OmegaConf.to_container(cfg, resolve=True, throw_on_missing=True)
    kwargs = {'name': cfg.general.name, 'project': f'graph_ddm_{cfg.dataset.name}', 'config': config_dict,
              'settings': wandb.Settings(_disable_stats=True), 'reinit': True, 'mode': cfg.general.wandb}
    wandb.init(**kwargs)
    wandb.save('*.txt')


def sum_except_batch(x):
    return x.reshape(x.size(0), -1).sum(dim=-1)


def assert_correctly_masked(variable, node_mask):
    assert (variable * (1 - node_mask.long())).abs().max().item() < 1e-4, \
        'Variables not masked properly.'


def sample_gaussian(size):
    x = torch.randn(size)
    return x


def sample_gaussian_with_mask(size, node_mask):
    x = torch.randn(size)
    x = x.type_as(node_mask.float())
    x_masked = x * node_mask
    return x_masked


def clip_noise_schedule(alphas2, clip_value=0.001):
    """
    For a noise schedule given by alpha^2, this clips alpha_t / alpha_t-1. This may help improve stability during
    sampling.
    """
    alphas2 = np.concatenate([np.ones(1), alphas2], axis=0)

    alphas_step = (alphas2[1:] / alphas2[:-1])

    alphas_step = np.clip(alphas_step, a_min=clip_value, a_max=1.)
    alphas2 = np.cumprod(alphas_step, axis=0)

    return alphas2


def cosine_beta_schedule(timesteps, s=0.008, raise_to_power: float = 1):
    """
    cosine schedule
    as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
    """
    steps = timesteps + 2
    x = np.linspace(0, steps, steps)
    alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
    alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
    betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
    betas = np.clip(betas, a_min=0, a_max=0.999)
    alphas = 1. - betas
    alphas_cumprod = np.cumprod(alphas, axis=0)

    if raise_to_power != 1:
        alphas_cumprod = np.power(alphas_cumprod, raise_to_power)

    return alphas_cumprod


def cosine_beta_schedule_discrete(timesteps, s=0.008):
    """ Cosine schedule as proposed in https://openreview.net/forum?id=-NEXDKk8gZ. """
    steps = timesteps + 2
    x = np.linspace(0, steps, steps)

    alphas_cumprod = np.cos(0.5 * np.pi * ((x / steps) + s) / (1 + s)) ** 2
    alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
    alphas = (alphas_cumprod[1:] / alphas_cumprod[:-1])
    betas = 1 - alphas
    return betas.squeeze()


def custom_beta_schedule_discrete(timesteps, average_num_nodes=50, s=0.008):
    """ Cosine schedule as proposed in https://openreview.net/forum?id=-NEXDKk8gZ. """
    steps = timesteps + 2
    x = np.linspace(0, steps, steps)

    alphas_cumprod = np.cos(0.5 * np.pi * ((x / steps) + s) / (1 + s)) ** 2
    alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
    alphas = (alphas_cumprod[1:] / alphas_cumprod[:-1])
    betas = 1 - alphas

    assert timesteps >= 100

    p = 4 / 5       # 1 - 1 / num_edge_classes
    num_edges = average_num_nodes * (average_num_nodes - 1) / 2

    # First 100 steps: only a few updates per graph
    updates_per_graph = 1.2
    beta_first = updates_per_graph / (p * num_edges)

    betas[betas < beta_first] = beta_first
    return np.array(betas)



def gaussian_KL(q_mu, q_sigma):
    """Computes the KL distance between a normal distribution and the standard normal.
        Args:
            q_mu: Mean of distribution q.
            q_sigma: Standard deviation of distribution q.
            p_mu: Mean of distribution p.
            p_sigma: Standard deviation of distribution p.
        Returns:
            The KL distance, summed over all dimensions except the batch dim.
        """
    return sum_except_batch((torch.log(1 / q_sigma) + 0.5 * (q_sigma ** 2 + q_mu ** 2) - 0.5))


def cdf_std_gaussian(x):
    return 0.5 * (1. + torch.erf(x / math.sqrt(2)))


def SNR(gamma):
    """Computes signal to noise ratio (alpha^2/sigma^2) given gamma."""
    return torch.exp(-gamma)


def inflate_batch_array(array, target_shape):
    """
    Inflates the batch array (array) with only a single axis (i.e. shape = (batch_size,), or possibly more empty
    axes (i.e. shape (batch_size, 1, ..., 1)) to match the target shape.
    """
    target_shape = (array.size(0),) + (1,) * (len(target_shape) - 1)
    return array.view(target_shape)


def sigma(gamma, target_shape):
    """Computes sigma given gamma."""
    return inflate_batch_array(torch.sqrt(torch.sigmoid(gamma)), target_shape)


def alpha(gamma, target_shape):
    """Computes alpha given gamma."""
    return inflate_batch_array(torch.sqrt(torch.sigmoid(-gamma)), target_shape)


def check_mask_correct(variables, node_mask):
    for i, variable in enumerate(variables):
        if len(variable) > 0:
            assert_correctly_masked(variable, node_mask)


def check_tensor_same_size(*args):
    for i, arg in enumerate(args):
        if i == 0:
            continue
        assert args[0].size() == arg.size()


def sigma_and_alpha_t_given_s(gamma_t: torch.Tensor, gamma_s: torch.Tensor, target_size: torch.Size):
    """
    Computes sigma t given s, using gamma_t and gamma_s. Used during sampling.

    These are defined as:
        alpha t given s = alpha t / alpha s,
        sigma t given s = sqrt(1 - (alpha t given s) ^2 ).
    """
    sigma2_t_given_s = inflate_batch_array(
        -torch.expm1(F.softplus(gamma_s) - F.softplus(gamma_t)), target_size
    )

    # alpha_t_given_s = alpha_t / alpha_s
    log_alpha2_t = F.logsigmoid(-gamma_t)
    log_alpha2_s = F.logsigmoid(-gamma_s)
    log_alpha2_t_given_s = log_alpha2_t - log_alpha2_s

    alpha_t_given_s = torch.exp(0.5 * log_alpha2_t_given_s)
    alpha_t_given_s = inflate_batch_array(alpha_t_given_s, target_size)

    sigma_t_given_s = torch.sqrt(sigma2_t_given_s)

    return sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s


def reverse_tensor(x):
    return x[torch.arange(x.size(0) - 1, -1, -1)]


def sample_feature_noise(X_size, E_size, y_size, node_mask):
    """Standard normal noise for all features.
        Output size: X.size(), E.size(), y.size() """
    # TODO: How to change this for the multi-gpu case?
    epsX = sample_gaussian(X_size)
    epsE = sample_gaussian(E_size)
    epsy = sample_gaussian(y_size)

    float_mask = node_mask.float()
    epsX = epsX.type_as(float_mask)
    epsE = epsE.type_as(float_mask)
    epsy = epsy.type_as(float_mask)

    # Get upper triangular part of edge noise, without main diagonal
    upper_triangular_mask = torch.zeros_like(epsE)
    indices = torch.triu_indices(row=epsE.size(1), col=epsE.size(2), offset=1)
    upper_triangular_mask[:, indices[0], indices[1], :] = 1

    epsE = epsE * upper_triangular_mask
    epsE = (epsE + torch.transpose(epsE, 1, 2))

    assert (epsE == torch.transpose(epsE, 1, 2)).all()

    return PlaceHolder(X=epsX, E=epsE, y=epsy).mask(node_mask)


def sample_normal(mu_X, mu_E, mu_y, sigma, node_mask):
    """Samples from a Normal distribution."""
    # TODO: change for multi-gpu case
    eps = sample_feature_noise(mu_X.size(), mu_E.size(), mu_y.size(), node_mask).type_as(mu_X)
    X = mu_X + sigma * eps.X
    E = mu_E + sigma.unsqueeze(1) * eps.E
    y = mu_y + sigma.squeeze(1) * eps.y
    return PlaceHolder(X=X, E=E, y=y)


def check_issues_norm_values(gamma, norm_val1, norm_val2, num_stdevs=8):
    """ Check if 1 / norm_value is still larger than 10 * standard deviation. """
    zeros = torch.zeros((1, 1))
    gamma_0 = gamma(zeros)
    sigma_0 = sigma(gamma_0, target_shape=zeros.size()).item()
    max_norm_value = max(norm_val1, norm_val2)
    if sigma_0 * num_stdevs > 1. / max_norm_value:
        raise ValueError(
            f'Value for normalization value {max_norm_value} probably too '
            f'large with sigma_0 {sigma_0:.5f} and '
            f'1 / norm_value = {1. / max_norm_value}')


def sample_discrete_features(probX, probE, node_mask):
    ''' Sample features from multinomial distribution with given probabilities (probX, probE, proby)
        :param probX: bs, n, dx_out        node features
        :param probE: bs, n, n, de_out     edge features
        :param proby: bs, dy_out           global features.
    '''
    bs, n, _ = probX.shape
    # Noise X
    # The masked rows should define probability distributions as well
    probX[~node_mask] = 1 / probX.shape[-1]

    # Flatten the probability tensor to sample with multinomial
    probX = probX.reshape(bs * n, -1)       # (bs * n, dx_out)

    # Sample X
    X_t = probX.multinomial(1)                                  # (bs * n, 1)
    X_t = X_t.reshape(bs, n)     # (bs, n)

    # Noise E
    # The masked rows should define probability distributions as well
    inverse_edge_mask = ~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2))
    diag_mask = torch.eye(n).unsqueeze(0).expand(bs, -1, -1)

    probE[inverse_edge_mask] = 1 / probE.shape[-1]
    probE[diag_mask.bool()] = 1 / probE.shape[-1]

    probE = probE.reshape(bs * n * n, -1)    # (bs * n * n, de_out)

    # Sample E
    E_t = probE.multinomial(1).reshape(bs, n, n)   # (bs, n, n)
    E_t = torch.triu(E_t, diagonal=1)
    E_t = (E_t + torch.transpose(E_t, 1, 2))

    return PlaceHolder(X=X_t, E=E_t, y=torch.zeros(bs, 0).type_as(X_t))


def compute_posterior_distribution(M, M_t, Qt_M, Qsb_M, Qtb_M):
    ''' M: X or E
        Compute xt @ Qt.T * x0 @ Qsb / x0 @ Qtb @ xt.T
    '''
    # Flatten feature tensors
    M = M.flatten(start_dim=1, end_dim=-2).to(torch.float32)        # (bs, N, d) with N = n or n * n
    M_t = M_t.flatten(start_dim=1, end_dim=-2).to(torch.float32)    # same

    Qt_M_T = torch.transpose(Qt_M, -2, -1)      # (bs, d, d)

    left_term = M_t @ Qt_M_T   # (bs, N, d)
    right_term = M @ Qsb_M     # (bs, N, d)
    product = left_term * right_term    # (bs, N, d)

    denom = M @ Qtb_M     # (bs, N, d) @ (bs, d, d) = (bs, N, d)
    denom = (denom * M_t).sum(dim=-1)   # (bs, N, d) * (bs, N, d) + sum = (bs, N)
    # denom = product.sum(dim=-1)
    # denom[denom == 0.] = 1

    prob = product / denom.unsqueeze(-1)    # (bs, N, d)

    return prob


def compute_batched_over0_posterior_distribution(X_t, Qt, Qsb, Qtb):
    """ M: X or E
        Compute xt @ Qt.T * x0 @ Qsb / x0 @ Qtb @ xt.T for each possible value of x0
        X_t: bs, n, dt          or bs, n, n, dt
        Qt: bs, d_t-1, dt
        Qsb: bs, d0, d_t-1
        Qtb: bs, d0, dt.
    """
    # Flatten feature tensors
    # Careful with this line. It does nothing if X is a node feature. If X is an edge features it maps to
    # bs x (n ** 2) x d
    X_t = X_t.flatten(start_dim=1, end_dim=-2).to(torch.float32)            # bs x N x dt

    Qt_T = Qt.transpose(-1, -2)                 # bs, dt, d_t-1
    left_term = X_t @ Qt_T                      # bs, N, d_t-1
    left_term = left_term.unsqueeze(dim=2)      # bs, N, 1, d_t-1

    right_term = Qsb.unsqueeze(1)               # bs, 1, d0, d_t-1
    numerator = left_term * right_term          # bs, N, d0, d_t-1

    X_t_transposed = X_t.transpose(-1, -2)      # bs, dt, N

    prod = Qtb @ X_t_transposed                 # bs, d0, N
    prod = prod.transpose(-1, -2)               # bs, N, d0
    denominator = prod.unsqueeze(-1)            # bs, N, d0, 1
    denominator[denominator == 0] = 1e-6

    out = numerator / denominator
    return out


def mask_distributions(true_X, true_E, pred_X, pred_E, node_mask):
    """
    Set masked rows to arbitrary distributions, so it doesn't contribute to loss
    :param true_X: bs, n, dx_out
    :param true_E: bs, n, n, de_out
    :param pred_X: bs, n, dx_out
    :param pred_E: bs, n, n, de_out
    :param node_mask: bs, n
    :return: same sizes as input
    """

    row_X = torch.zeros(true_X.size(-1), dtype=torch.float, device=true_X.device)
    row_X[0] = 1.
    row_E = torch.zeros(true_E.size(-1), dtype=torch.float, device=true_E.device)
    row_E[0] = 1.

    diag_mask = ~torch.eye(node_mask.size(1), device=node_mask.device, dtype=torch.bool).unsqueeze(0)
    true_X[~node_mask] = row_X
    pred_X[~node_mask] = row_X
    true_E[~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2) * diag_mask), :] = row_E
    pred_E[~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2) * diag_mask), :] = row_E

    true_X = true_X + 1e-7
    pred_X = pred_X + 1e-7
    true_E = true_E + 1e-7
    pred_E = pred_E + 1e-7

    true_X = true_X / torch.sum(true_X, dim=-1, keepdim=True)
    pred_X = pred_X / torch.sum(pred_X, dim=-1, keepdim=True)
    true_E = true_E / torch.sum(true_E, dim=-1, keepdim=True)
    pred_E = pred_E / torch.sum(pred_E, dim=-1, keepdim=True)

    return true_X, true_E, pred_X, pred_E


def posterior_distributions(X, E, y, X_t, E_t, y_t, Qt, Qsb, Qtb):
    prob_X = compute_posterior_distribution(M=X, M_t=X_t, Qt_M=Qt.X, Qsb_M=Qsb.X, Qtb_M=Qtb.X)   # (bs, n, dx)
    prob_E = compute_posterior_distribution(M=E, M_t=E_t, Qt_M=Qt.E, Qsb_M=Qsb.E, Qtb_M=Qtb.E)   # (bs, n * n, de)

    return PlaceHolder(X=prob_X, E=prob_E, y=y_t)


def sample_discrete_feature_noise(limit_dist, node_mask, transition):
    """ Sample from the limit distribution of the diffusion process"""
    bs, n_max = node_mask.shape

    x_limit = limit_dist.X[None, None, :].expand(bs, n_max, -1)
    e_limit = limit_dist.E[None, None, None, :].expand(bs, n_max, n_max, -1)
    y_limit = limit_dist.y[None, :].expand(bs, -1)

    U_X = x_limit.flatten(end_dim=-2).multinomial(1).reshape(bs, n_max)
    U_E = e_limit.flatten(end_dim=-2).multinomial(1).reshape(bs, n_max, n_max)
    # print(U_E.shape, U_X.shape, y_limit.shape)
    U_y = torch.empty((bs, 0))

    long_mask = node_mask.long()
    U_X = U_X.type_as(long_mask)
    U_E = U_E.type_as(long_mask)
    U_y = U_y.type_as(long_mask)

    U_X = F.one_hot(U_X, num_classes=x_limit.shape[-1]).float()
    U_E = F.one_hot(U_E, num_classes=e_limit.shape[-1]).float()

    # Get upper triangular part of edge noise, without main diagonal
    upper_triangular_mask = torch.zeros_like(U_E)
    indices = torch.triu_indices(row=U_E.size(1), col=U_E.size(2), offset=1)
    upper_triangular_mask[:, indices[0], indices[1], :] = 1

    U_E = U_E * upper_triangular_mask
    U_E = (U_E + torch.transpose(U_E, 1, 2))

    assert (U_E == torch.transpose(U_E, 1, 2)).all()

    # print(U_X.shape, limit_dist.cond.shape)
    return PlaceHolder(X=U_X, E=U_E, y=U_y).mask(node_mask)