YongdongWang's picture
initial commit
9ffc795
|
raw
history blame
3.53 kB
---
title: Robot Task Planning - Llama 3.1 8B
emoji: ๐Ÿค–
colorFrom: blue
colorTo: green
sdk: gradio
app_file: app.py
pinned: false
license: llama3.1
---
# ๐Ÿค– Robot Task Planning - Llama 3.1 8B (ZeroGPU)
This Space demonstrates a fine-tuned version of Meta's **Llama 3.1 8B** model specialized for **robot task planning** using QLoRA (4-bit quantization + LoRA) technique.
## ๐Ÿš€ Hardware: ZeroGPU
This Space uses **ZeroGPU** - dynamic GPU allocation with Nvidia H200:
- **Free** for HuggingFace users
- **Dynamic allocation** - GPU resources allocated on-demand
- **High performance** - H200 offers superior performance
- **60-second duration** per request
## ๐ŸŽฏ Purpose
Convert natural language commands into structured task sequences for construction robots including:
- **Excavators** - Digging, loading, positioning
- **Dump Trucks** - Material transport, loading, unloading
- **Multi-robot Coordination** - Complex task dependencies
## ๐Ÿ”— Model
**Fine-tuned Model**: [YongdongWang/llama-3.1-8b-dart-qlora](https://huggingface.co/YongdongWang/llama-3.1-8b-dart-qlora)
**Base Model**: [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B)
## โœจ Features
- ๐ŸŽฎ **Interactive Chat Interface** - Real-time robot command processing
- โš™๏ธ **Configurable Generation** - Adjust temperature, top-p, max tokens
- ๐Ÿ“ **Example Commands** - Pre-built scenarios to get started
- ๐Ÿš€ **Optimized Performance** - 4-bit quantization for efficient inference
- ๐Ÿ“Š **Structured Output** - JSON-formatted task sequences
- โšก **ZeroGPU Powered** - Dynamic GPU allocation for free users
## ๐Ÿš€ Usage
1. **Input**: Natural language robot commands
```
"Deploy Excavator 1 to Soil Area 1 for excavation"
```
2. **Output**: Structured task sequences
```json
{
"tasks": [
{
"robot": "Excavator_1",
"action": "move_to",
"target": "Soil_Area_1",
"duration": 30
},
{
"robot": "Excavator_1",
"action": "excavate",
"target": "Soil_Area_1",
"duration": 120
}
]
}
```
## ๐Ÿ› ๏ธ Technical Details
- **Architecture**: Llama 3.1 8B + QLoRA adapters
- **Quantization**: 4-bit (NF4) with double quantization
- **Framework**: Transformers + PEFT + BitsAndBytesConfig
- **Hardware**: ZeroGPU (Dynamic Nvidia H200)
## โšก Performance Notes
- **First Generation**: 5-10 seconds (GPU allocation + model loading)
- **Subsequent Generations**: 2-5 seconds per response
- **Memory Usage**: ~8GB VRAM with 4-bit quantization
- **Context Length**: Up to 2048 tokens
- **GPU Duration**: 60 seconds per request
## ๐Ÿ“š Example Commands
Try these robot commands:
- `"Deploy Excavator 1 to Soil Area 1 for excavation"`
- `"Send Dump Truck 1 to collect material, then unload at storage"`
- `"Coordinate multiple excavators across different areas"`
- `"Create evacuation sequence for all robots from dangerous zone"`
## ๐Ÿ”ฌ Research Applications
This model demonstrates:
- **Natural Language โ†’ Robot Planning** translation
- **Multi-agent Task Coordination**
- **Efficient LLM Fine-tuning** with QLoRA
- **Real-time Robot Command Processing**
- **ZeroGPU Integration** for scalable deployment
## ๐Ÿ“„ License
This project uses Meta's Llama 3.1 license. Please review the license terms before use.
## ๐Ÿค Contributing
For issues, improvements, or questions about the model, please visit the [model repository](https://huggingface.co/YongdongWang/llama-3.1-8b-dart-qlora).