Spaces:
Paused
Paused
File size: 4,206 Bytes
99b955f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import base64
from datetime import datetime
from time import perf_counter
import gradio as gr
import numpy as np
from backend.device import get_device_name, is_openvino_device
from backend.lcm_text_to_image import LCMTextToImage
from backend.models.lcmdiffusion_setting import LCMDiffusionSetting, LCMLora
from constants import APP_VERSION, DEVICE, LCM_DEFAULT_MODEL_OPENVINO
from cv2 import imencode
lcm_text_to_image = LCMTextToImage()
lcm_lora = LCMLora(
base_model_id="Lykon/dreamshaper-8",
lcm_lora_id="latent-consistency/lcm-lora-sdv1-5",
)
# https://github.com/gradio-app/gradio/issues/2635#issuecomment-1423531319
def encode_pil_to_base64_new(pil_image):
image_arr = np.asarray(pil_image)[:, :, ::-1]
_, byte_data = imencode(".png", image_arr)
base64_data = base64.b64encode(byte_data)
base64_string_opencv = base64_data.decode("utf-8")
return "data:image/png;base64," + base64_string_opencv
# monkey patching encode pil
gr.processing_utils.encode_pil_to_base64 = encode_pil_to_base64_new
def predict(
prompt,
steps,
seed,
):
lcm_diffusion_setting = LCMDiffusionSetting()
lcm_diffusion_setting.openvino_lcm_model_id = "rupeshs/sdxs-512-0.9-openvino"
lcm_diffusion_setting.prompt = prompt
lcm_diffusion_setting.guidance_scale = 1.0
lcm_diffusion_setting.inference_steps = steps
lcm_diffusion_setting.seed = seed
lcm_diffusion_setting.use_seed = True
lcm_diffusion_setting.image_width = 512
lcm_diffusion_setting.image_height = 512
lcm_diffusion_setting.use_openvino = True if is_openvino_device() else False
lcm_diffusion_setting.use_tiny_auto_encoder = True
lcm_text_to_image.init(
DEVICE,
lcm_diffusion_setting,
)
start = perf_counter()
images = lcm_text_to_image.generate(lcm_diffusion_setting)
latency = perf_counter() - start
print(f"Latency: {latency:.2f} seconds")
return images[0]
css = """
#container{
margin: 0 auto;
max-width: 40rem;
}
#intro{
max-width: 100%;
text-align: center;
margin: 0 auto;
}
#generate_button {
color: white;
border-color: #007bff;
background: #007bff;
width: 200px;
height: 50px;
}
footer {
visibility: hidden
}
"""
def _get_footer_message() -> str:
version = f"<center><p> {APP_VERSION} "
current_year = datetime.now().year
footer_msg = version + (
f' © 2023 - {current_year} <a href="https://github.com/rupeshs">'
" Rupesh Sreeraman</a></p></center>"
)
return footer_msg
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="container"):
use_openvino = "- OpenVINO" if is_openvino_device() else ""
gr.Markdown(
f"""# Realtime FastSD CPU {use_openvino}
**Device : {DEVICE} , {get_device_name()}**
""",
elem_id="intro",
)
with gr.Row():
with gr.Row():
prompt = gr.Textbox(
placeholder="Describe the image you'd like to see",
scale=5,
container=False,
)
generate_btn = gr.Button(
"Generate",
scale=1,
elem_id="generate_button",
)
image = gr.Image(type="filepath")
steps = gr.Slider(
label="Steps",
value=1,
minimum=1,
maximum=6,
step=1,
visible=False,
)
seed = gr.Slider(
randomize=True,
minimum=0,
maximum=999999999,
label="Seed",
step=1,
)
gr.HTML(_get_footer_message())
inputs = [prompt, steps, seed]
prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False)
generate_btn.click(
fn=predict, inputs=inputs, outputs=image, show_progress=False
)
steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
def start_realtime_text_to_image(share=False):
demo.queue()
demo.launch(share=share)
|