File size: 23,849 Bytes
99b955f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
import gc
from math import ceil
from typing import Any, List
import random

import numpy as np
import torch
import logging
from backend.device import is_openvino_device
from backend.lora import load_lora_weight
from backend.controlnet import (
    load_controlnet_adapters,
    update_controlnet_arguments,
)
from backend.models.lcmdiffusion_setting import (
    DiffusionTask,
    LCMDiffusionSetting,
    LCMLora,
)
from backend.openvino.pipelines import (
    get_ov_image_to_image_pipeline,
    get_ov_text_to_image_pipeline,
    ov_load_taesd,
)
from backend.pipelines.lcm import (
    get_image_to_image_pipeline,
    get_lcm_model_pipeline,
    load_taesd,
)
from backend.pipelines.lcm_lora import get_lcm_lora_pipeline
from constants import DEVICE, GGUF_THREADS
from diffusers import LCMScheduler
from image_ops import resize_pil_image
from backend.openvino.flux_pipeline import get_flux_pipeline
from backend.openvino.ov_hc_stablediffusion_pipeline import OvHcLatentConsistency
from backend.gguf.gguf_diffusion import (
    GGUFDiffusion,
    ModelConfig,
    Txt2ImgConfig,
    SampleMethod,
)
from paths import get_app_path
from pprint import pprint

try:
    # support for token merging; keeping it optional for now
    import tomesd
except ImportError:
    print("tomesd library unavailable; disabling token merging support")
    tomesd = None


class LCMTextToImage:
    def __init__(
        self,
        device: str = "cpu",
    ) -> None:
        self.pipeline = None
        self.use_openvino = False
        self.device = ""
        self.previous_model_id = None
        self.previous_use_tae_sd = False
        self.previous_use_lcm_lora = False
        self.previous_ov_model_id = ""
        self.previous_token_merging = 0.0
        self.previous_safety_checker = False
        self.previous_use_openvino = False
        self.img_to_img_pipeline = None
        self.is_openvino_init = False
        self.previous_lora = None
        self.task_type = DiffusionTask.text_to_image
        self.previous_use_gguf_model = False
        self.previous_gguf_model = None
        self.torch_data_type = (
            torch.float32 if is_openvino_device() or DEVICE == "mps" else torch.float16
        )
        self.ov_model_id = None
        print(f"Torch datatype : {self.torch_data_type}")

    def _pipeline_to_device(self):
        print(f"Pipeline device : {DEVICE}")
        print(f"Pipeline dtype : {self.torch_data_type}")
        self.pipeline.to(
            torch_device=DEVICE,
            torch_dtype=self.torch_data_type,
        )

    def _add_freeu(self):
        pipeline_class = self.pipeline.__class__.__name__
        if isinstance(self.pipeline.scheduler, LCMScheduler):
            if pipeline_class == "StableDiffusionPipeline":
                print("Add FreeU - SD")
                self.pipeline.enable_freeu(
                    s1=0.9,
                    s2=0.2,
                    b1=1.2,
                    b2=1.4,
                )
            elif pipeline_class == "StableDiffusionXLPipeline":
                print("Add FreeU - SDXL")
                self.pipeline.enable_freeu(
                    s1=0.6,
                    s2=0.4,
                    b1=1.1,
                    b2=1.2,
                )

    def _enable_vae_tiling(self):
        self.pipeline.vae.enable_tiling()

    def _update_lcm_scheduler_params(self):
        if isinstance(self.pipeline.scheduler, LCMScheduler):
            self.pipeline.scheduler = LCMScheduler.from_config(
                self.pipeline.scheduler.config,
                beta_start=0.001,
                beta_end=0.01,
            )

    def _is_hetero_pipeline(self) -> bool:
        return "square" in self.ov_model_id.lower()

    def _load_ov_hetero_pipeline(self):
        print("Loading Heterogeneous Compute pipeline")
        if DEVICE.upper()=="NPU":
            device = ["NPU", "NPU", "NPU"]
            self.pipeline = OvHcLatentConsistency(self.ov_model_id,device)
        else:
            self.pipeline = OvHcLatentConsistency(self.ov_model_id)

    def _generate_images_hetero_compute(
        self,
        lcm_diffusion_setting: LCMDiffusionSetting,
    ):
        print("Using OpenVINO ")
        if lcm_diffusion_setting.diffusion_task == DiffusionTask.text_to_image.value:
            return [
                self.pipeline.generate(
                    prompt=lcm_diffusion_setting.prompt,
                    neg_prompt=lcm_diffusion_setting.negative_prompt,
                    init_image=None,
                    strength=1.0,
                    num_inference_steps=lcm_diffusion_setting.inference_steps,
                )
            ]
        else:
            return [
                self.pipeline.generate(
                    prompt=lcm_diffusion_setting.prompt,
                    neg_prompt=lcm_diffusion_setting.negative_prompt,
                    init_image=lcm_diffusion_setting.init_image,
                    strength=lcm_diffusion_setting.strength,
                    num_inference_steps=lcm_diffusion_setting.inference_steps,
                )
            ]

    def _is_valid_mode(
        self,
        modes: List,
    ) -> bool:
        return modes.count(True) == 1 or modes.count(False) == 3

    def _validate_mode(
        self,
        modes: List,
    ) -> None:
        if not self._is_valid_mode(modes):
            raise ValueError("Invalid mode,delete configs/settings.yaml and retry!")

    def init(
        self,
        device: str = "cpu",
        lcm_diffusion_setting: LCMDiffusionSetting = LCMDiffusionSetting(),
    ) -> None:
        # Mode validation either LCM LoRA or OpenVINO or GGUF

        modes = [
            lcm_diffusion_setting.use_gguf_model,
            lcm_diffusion_setting.use_openvino,
            lcm_diffusion_setting.use_lcm_lora,
        ]
        self._validate_mode(modes)
        self.device = device
        self.use_openvino = lcm_diffusion_setting.use_openvino
        model_id = lcm_diffusion_setting.lcm_model_id
        use_local_model = lcm_diffusion_setting.use_offline_model
        use_tiny_auto_encoder = lcm_diffusion_setting.use_tiny_auto_encoder
        use_lora = lcm_diffusion_setting.use_lcm_lora
        lcm_lora: LCMLora = lcm_diffusion_setting.lcm_lora
        token_merging = lcm_diffusion_setting.token_merging
        self.ov_model_id = lcm_diffusion_setting.openvino_lcm_model_id

        if lcm_diffusion_setting.diffusion_task == DiffusionTask.image_to_image.value:
            lcm_diffusion_setting.init_image = resize_pil_image(
                lcm_diffusion_setting.init_image,
                lcm_diffusion_setting.image_width,
                lcm_diffusion_setting.image_height,
            )

        if (
            self.pipeline is None
            or self.previous_model_id != model_id
            or self.previous_use_tae_sd != use_tiny_auto_encoder
            or self.previous_lcm_lora_base_id != lcm_lora.base_model_id
            or self.previous_lcm_lora_id != lcm_lora.lcm_lora_id
            or self.previous_use_lcm_lora != use_lora
            or self.previous_ov_model_id != self.ov_model_id
            or self.previous_token_merging != token_merging
            or self.previous_safety_checker != lcm_diffusion_setting.use_safety_checker
            or self.previous_use_openvino != lcm_diffusion_setting.use_openvino
            or self.previous_use_gguf_model != lcm_diffusion_setting.use_gguf_model
            or self.previous_gguf_model != lcm_diffusion_setting.gguf_model
            or (
                self.use_openvino
                and (
                    self.previous_task_type != lcm_diffusion_setting.diffusion_task
                    or self.previous_lora != lcm_diffusion_setting.lora
                )
            )
            or lcm_diffusion_setting.rebuild_pipeline
        ):
            if self.use_openvino and is_openvino_device():
                if self.pipeline:
                    del self.pipeline
                    self.pipeline = None
                    gc.collect()
                self.is_openvino_init = True
                if (
                    lcm_diffusion_setting.diffusion_task
                    == DiffusionTask.text_to_image.value
                ):
                    print(
                        f"***** Init Text to image (OpenVINO) - {self.ov_model_id} *****"
                    )
                    if "flux" in self.ov_model_id.lower():
                        print("Loading OpenVINO Flux pipeline")
                        self.pipeline = get_flux_pipeline(
                            self.ov_model_id,
                            lcm_diffusion_setting.use_tiny_auto_encoder,
                        )
                    elif self._is_hetero_pipeline():
                        self._load_ov_hetero_pipeline()
                    else:
                        self.pipeline = get_ov_text_to_image_pipeline(
                            self.ov_model_id,
                            use_local_model,
                        )
                elif (
                    lcm_diffusion_setting.diffusion_task
                    == DiffusionTask.image_to_image.value
                ):
                    if not self.pipeline and self._is_hetero_pipeline():
                        self._load_ov_hetero_pipeline()
                    else:
                        print(
                            f"***** Image to image (OpenVINO) - {self.ov_model_id} *****"
                        )
                        self.pipeline = get_ov_image_to_image_pipeline(
                            self.ov_model_id,
                            use_local_model,
                        )
            elif lcm_diffusion_setting.use_gguf_model:
                model = lcm_diffusion_setting.gguf_model.diffusion_path
                print(f"***** Init Text to image (GGUF) - {model} *****")
                # if self.pipeline:
                #     self.pipeline.terminate()
                #     del self.pipeline
                #     self.pipeline = None
                self._init_gguf_diffusion(lcm_diffusion_setting)
            else:
                if self.pipeline or self.img_to_img_pipeline:
                    self.pipeline = None
                    self.img_to_img_pipeline = None
                    gc.collect()

                controlnet_args = load_controlnet_adapters(lcm_diffusion_setting)
                if use_lora:
                    print(
                        f"***** Init LCM-LoRA pipeline - {lcm_lora.base_model_id} *****"
                    )
                    self.pipeline = get_lcm_lora_pipeline(
                        lcm_lora.base_model_id,
                        lcm_lora.lcm_lora_id,
                        use_local_model,
                        torch_data_type=self.torch_data_type,
                        pipeline_args=controlnet_args,
                    )

                else:
                    print(f"***** Init LCM Model pipeline - {model_id} *****")
                    self.pipeline = get_lcm_model_pipeline(
                        model_id,
                        use_local_model,
                        controlnet_args,
                    )

                self.img_to_img_pipeline = get_image_to_image_pipeline(self.pipeline)

                if tomesd and token_merging > 0.001:
                    print(f"***** Token Merging: {token_merging} *****")
                    tomesd.apply_patch(self.pipeline, ratio=token_merging)
                    tomesd.apply_patch(self.img_to_img_pipeline, ratio=token_merging)

            if use_tiny_auto_encoder:
                if self.use_openvino and is_openvino_device():
                    if self.pipeline.__class__.__name__ != "OVFluxPipeline":
                        print("Using Tiny Auto Encoder (OpenVINO)")
                        ov_load_taesd(
                            self.pipeline,
                            use_local_model,
                        )
                else:
                    print("Using Tiny Auto Encoder")
                    load_taesd(
                        self.pipeline,
                        use_local_model,
                        self.torch_data_type,
                    )
                    load_taesd(
                        self.img_to_img_pipeline,
                        use_local_model,
                        self.torch_data_type,
                    )

            if not self.use_openvino and not is_openvino_device():
                self._pipeline_to_device()

            if not self._is_hetero_pipeline():
                if (
                    lcm_diffusion_setting.diffusion_task
                    == DiffusionTask.image_to_image.value
                    and lcm_diffusion_setting.use_openvino
                ):
                    self.pipeline.scheduler = LCMScheduler.from_config(
                        self.pipeline.scheduler.config,
                    )
                else:
                    if not lcm_diffusion_setting.use_gguf_model:
                        self._update_lcm_scheduler_params()

            if use_lora:
                self._add_freeu()

            self.previous_model_id = model_id
            self.previous_ov_model_id = self.ov_model_id
            self.previous_use_tae_sd = use_tiny_auto_encoder
            self.previous_lcm_lora_base_id = lcm_lora.base_model_id
            self.previous_lcm_lora_id = lcm_lora.lcm_lora_id
            self.previous_use_lcm_lora = use_lora
            self.previous_token_merging = lcm_diffusion_setting.token_merging
            self.previous_safety_checker = lcm_diffusion_setting.use_safety_checker
            self.previous_use_openvino = lcm_diffusion_setting.use_openvino
            self.previous_task_type = lcm_diffusion_setting.diffusion_task
            self.previous_lora = lcm_diffusion_setting.lora.model_copy(deep=True)
            self.previous_use_gguf_model = lcm_diffusion_setting.use_gguf_model
            self.previous_gguf_model = lcm_diffusion_setting.gguf_model.model_copy(
                deep=True
            )
            lcm_diffusion_setting.rebuild_pipeline = False
            if (
                lcm_diffusion_setting.diffusion_task
                == DiffusionTask.text_to_image.value
            ):
                print(f"Pipeline : {self.pipeline}")
            elif (
                lcm_diffusion_setting.diffusion_task
                == DiffusionTask.image_to_image.value
            ):
                if self.use_openvino and is_openvino_device():
                    print(f"Pipeline : {self.pipeline}")
                else:
                    print(f"Pipeline : {self.img_to_img_pipeline}")
            if self.use_openvino:
                if lcm_diffusion_setting.lora.enabled:
                    print("Warning: Lora models not supported on OpenVINO mode")
            elif not lcm_diffusion_setting.use_gguf_model:
                adapters = self.pipeline.get_active_adapters()
                print(f"Active adapters : {adapters}")

    def _get_timesteps(self):
        time_steps = self.pipeline.scheduler.config.get("timesteps")
        time_steps_value = [int(time_steps)] if time_steps else None
        return time_steps_value

    def generate(
        self,
        lcm_diffusion_setting: LCMDiffusionSetting,
        reshape: bool = False,
    ) -> Any:
        guidance_scale = lcm_diffusion_setting.guidance_scale
        img_to_img_inference_steps = lcm_diffusion_setting.inference_steps
        check_step_value = int(
            lcm_diffusion_setting.inference_steps * lcm_diffusion_setting.strength
        )
        if (
            lcm_diffusion_setting.diffusion_task == DiffusionTask.image_to_image.value
            and check_step_value < 1
        ):
            img_to_img_inference_steps = ceil(1 / lcm_diffusion_setting.strength)
            print(
                f"Strength: {lcm_diffusion_setting.strength},{img_to_img_inference_steps}"
            )

        pipeline_extra_args = {}

        if lcm_diffusion_setting.use_seed:
            cur_seed = lcm_diffusion_setting.seed
            # for multiple images with a fixed seed, use sequential seeds
            seeds = [(cur_seed + i) for i in range(lcm_diffusion_setting.number_of_images)]
        else:
            seeds = [random.randint(0,999999999) for i in range(lcm_diffusion_setting.number_of_images)]

        if self.use_openvino:
            # no support for generators; try at least to ensure reproducible results for single images
            np.random.seed(seeds[0])
            if self._is_hetero_pipeline():
                torch.manual_seed(seeds[0])
                lcm_diffusion_setting.seed=seeds[0]
        else:
            pipeline_extra_args['generator'] = [
                    torch.Generator(device=self.device).manual_seed(s) for s in seeds]

        is_openvino_pipe = lcm_diffusion_setting.use_openvino and is_openvino_device()
        if is_openvino_pipe and not self._is_hetero_pipeline():
            print("Using OpenVINO")
            if reshape and not self.is_openvino_init:
                print("Reshape and compile")
                self.pipeline.reshape(
                    batch_size=-1,
                    height=lcm_diffusion_setting.image_height,
                    width=lcm_diffusion_setting.image_width,
                    num_images_per_prompt=lcm_diffusion_setting.number_of_images,
                )
                self.pipeline.compile()

            if self.is_openvino_init:
                self.is_openvino_init = False

        if is_openvino_pipe and self._is_hetero_pipeline():
            return self._generate_images_hetero_compute(lcm_diffusion_setting)
        elif lcm_diffusion_setting.use_gguf_model:
            return self._generate_images_gguf(lcm_diffusion_setting)

        if lcm_diffusion_setting.clip_skip > 1:
            # We follow the convention that "CLIP Skip == 2" means "skip
            # the last layer", so "CLIP Skip == 1" means "no skipping"
            pipeline_extra_args["clip_skip"] = lcm_diffusion_setting.clip_skip - 1

        if not lcm_diffusion_setting.use_safety_checker:
            self.pipeline.safety_checker = None
            if (
                lcm_diffusion_setting.diffusion_task
                == DiffusionTask.image_to_image.value
                and not is_openvino_pipe
            ):
                self.img_to_img_pipeline.safety_checker = None

        if (
            not lcm_diffusion_setting.use_lcm_lora
            and not lcm_diffusion_setting.use_openvino
            and lcm_diffusion_setting.guidance_scale != 1.0
        ):
            print("Not using LCM-LoRA so setting guidance_scale 1.0")
            guidance_scale = 1.0

        controlnet_args = update_controlnet_arguments(lcm_diffusion_setting)
        if lcm_diffusion_setting.use_openvino:
            if (
                lcm_diffusion_setting.diffusion_task
                == DiffusionTask.text_to_image.value
            ):
                result_images = self.pipeline(
                    prompt=lcm_diffusion_setting.prompt,
                    negative_prompt=lcm_diffusion_setting.negative_prompt,
                    num_inference_steps=lcm_diffusion_setting.inference_steps,
                    guidance_scale=guidance_scale,
                    width=lcm_diffusion_setting.image_width,
                    height=lcm_diffusion_setting.image_height,
                    num_images_per_prompt=lcm_diffusion_setting.number_of_images,
                ).images
            elif (
                lcm_diffusion_setting.diffusion_task
                == DiffusionTask.image_to_image.value
            ):
                result_images = self.pipeline(
                    image=lcm_diffusion_setting.init_image,
                    strength=lcm_diffusion_setting.strength,
                    prompt=lcm_diffusion_setting.prompt,
                    negative_prompt=lcm_diffusion_setting.negative_prompt,
                    num_inference_steps=img_to_img_inference_steps * 3,
                    guidance_scale=guidance_scale,
                    num_images_per_prompt=lcm_diffusion_setting.number_of_images,
                ).images

        else:
            if (
                lcm_diffusion_setting.diffusion_task
                == DiffusionTask.text_to_image.value
            ):
                result_images = self.pipeline(
                    prompt=lcm_diffusion_setting.prompt,
                    negative_prompt=lcm_diffusion_setting.negative_prompt,
                    num_inference_steps=lcm_diffusion_setting.inference_steps,
                    guidance_scale=guidance_scale,
                    width=lcm_diffusion_setting.image_width,
                    height=lcm_diffusion_setting.image_height,
                    num_images_per_prompt=lcm_diffusion_setting.number_of_images,
                    timesteps=self._get_timesteps(),
                    **pipeline_extra_args,
                    **controlnet_args,
                ).images

            elif (
                lcm_diffusion_setting.diffusion_task
                == DiffusionTask.image_to_image.value
            ):
                result_images = self.img_to_img_pipeline(
                    image=lcm_diffusion_setting.init_image,
                    strength=lcm_diffusion_setting.strength,
                    prompt=lcm_diffusion_setting.prompt,
                    negative_prompt=lcm_diffusion_setting.negative_prompt,
                    num_inference_steps=img_to_img_inference_steps,
                    guidance_scale=guidance_scale,
                    width=lcm_diffusion_setting.image_width,
                    height=lcm_diffusion_setting.image_height,
                    num_images_per_prompt=lcm_diffusion_setting.number_of_images,
                    **pipeline_extra_args,
                    **controlnet_args,
                ).images

        for (i, seed) in enumerate(seeds):
            result_images[i].info['image_seed'] = seed

        return result_images

    def _init_gguf_diffusion(
        self,
        lcm_diffusion_setting: LCMDiffusionSetting,
    ):
        config = ModelConfig()
        config.model_path = lcm_diffusion_setting.gguf_model.diffusion_path
        config.diffusion_model_path = lcm_diffusion_setting.gguf_model.diffusion_path
        config.clip_l_path = lcm_diffusion_setting.gguf_model.clip_path
        config.t5xxl_path = lcm_diffusion_setting.gguf_model.t5xxl_path
        config.vae_path = lcm_diffusion_setting.gguf_model.vae_path
        config.n_threads = GGUF_THREADS
        print(f"GGUF Threads : {GGUF_THREADS} ")
        print("GGUF - Model config")
        pprint(lcm_diffusion_setting.gguf_model.model_dump())
        self.pipeline = GGUFDiffusion(
            get_app_path(),  # Place DLL in fastsdcpu folder
            config,
            True,
        )

    def _generate_images_gguf(
        self,
        lcm_diffusion_setting: LCMDiffusionSetting,
    ):
        if lcm_diffusion_setting.diffusion_task == DiffusionTask.text_to_image.value:
            t2iconfig = Txt2ImgConfig()
            t2iconfig.prompt = lcm_diffusion_setting.prompt
            t2iconfig.batch_count = lcm_diffusion_setting.number_of_images
            t2iconfig.cfg_scale = lcm_diffusion_setting.guidance_scale
            t2iconfig.height = lcm_diffusion_setting.image_height
            t2iconfig.width = lcm_diffusion_setting.image_width
            t2iconfig.sample_steps = lcm_diffusion_setting.inference_steps
            t2iconfig.sample_method = SampleMethod.EULER
            if lcm_diffusion_setting.use_seed:
                t2iconfig.seed = lcm_diffusion_setting.seed
            else:
                t2iconfig.seed = -1

            return self.pipeline.generate_text2mg(t2iconfig)