Spaces:
Paused
Paused
File size: 23,849 Bytes
99b955f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 |
import gc
from math import ceil
from typing import Any, List
import random
import numpy as np
import torch
import logging
from backend.device import is_openvino_device
from backend.lora import load_lora_weight
from backend.controlnet import (
load_controlnet_adapters,
update_controlnet_arguments,
)
from backend.models.lcmdiffusion_setting import (
DiffusionTask,
LCMDiffusionSetting,
LCMLora,
)
from backend.openvino.pipelines import (
get_ov_image_to_image_pipeline,
get_ov_text_to_image_pipeline,
ov_load_taesd,
)
from backend.pipelines.lcm import (
get_image_to_image_pipeline,
get_lcm_model_pipeline,
load_taesd,
)
from backend.pipelines.lcm_lora import get_lcm_lora_pipeline
from constants import DEVICE, GGUF_THREADS
from diffusers import LCMScheduler
from image_ops import resize_pil_image
from backend.openvino.flux_pipeline import get_flux_pipeline
from backend.openvino.ov_hc_stablediffusion_pipeline import OvHcLatentConsistency
from backend.gguf.gguf_diffusion import (
GGUFDiffusion,
ModelConfig,
Txt2ImgConfig,
SampleMethod,
)
from paths import get_app_path
from pprint import pprint
try:
# support for token merging; keeping it optional for now
import tomesd
except ImportError:
print("tomesd library unavailable; disabling token merging support")
tomesd = None
class LCMTextToImage:
def __init__(
self,
device: str = "cpu",
) -> None:
self.pipeline = None
self.use_openvino = False
self.device = ""
self.previous_model_id = None
self.previous_use_tae_sd = False
self.previous_use_lcm_lora = False
self.previous_ov_model_id = ""
self.previous_token_merging = 0.0
self.previous_safety_checker = False
self.previous_use_openvino = False
self.img_to_img_pipeline = None
self.is_openvino_init = False
self.previous_lora = None
self.task_type = DiffusionTask.text_to_image
self.previous_use_gguf_model = False
self.previous_gguf_model = None
self.torch_data_type = (
torch.float32 if is_openvino_device() or DEVICE == "mps" else torch.float16
)
self.ov_model_id = None
print(f"Torch datatype : {self.torch_data_type}")
def _pipeline_to_device(self):
print(f"Pipeline device : {DEVICE}")
print(f"Pipeline dtype : {self.torch_data_type}")
self.pipeline.to(
torch_device=DEVICE,
torch_dtype=self.torch_data_type,
)
def _add_freeu(self):
pipeline_class = self.pipeline.__class__.__name__
if isinstance(self.pipeline.scheduler, LCMScheduler):
if pipeline_class == "StableDiffusionPipeline":
print("Add FreeU - SD")
self.pipeline.enable_freeu(
s1=0.9,
s2=0.2,
b1=1.2,
b2=1.4,
)
elif pipeline_class == "StableDiffusionXLPipeline":
print("Add FreeU - SDXL")
self.pipeline.enable_freeu(
s1=0.6,
s2=0.4,
b1=1.1,
b2=1.2,
)
def _enable_vae_tiling(self):
self.pipeline.vae.enable_tiling()
def _update_lcm_scheduler_params(self):
if isinstance(self.pipeline.scheduler, LCMScheduler):
self.pipeline.scheduler = LCMScheduler.from_config(
self.pipeline.scheduler.config,
beta_start=0.001,
beta_end=0.01,
)
def _is_hetero_pipeline(self) -> bool:
return "square" in self.ov_model_id.lower()
def _load_ov_hetero_pipeline(self):
print("Loading Heterogeneous Compute pipeline")
if DEVICE.upper()=="NPU":
device = ["NPU", "NPU", "NPU"]
self.pipeline = OvHcLatentConsistency(self.ov_model_id,device)
else:
self.pipeline = OvHcLatentConsistency(self.ov_model_id)
def _generate_images_hetero_compute(
self,
lcm_diffusion_setting: LCMDiffusionSetting,
):
print("Using OpenVINO ")
if lcm_diffusion_setting.diffusion_task == DiffusionTask.text_to_image.value:
return [
self.pipeline.generate(
prompt=lcm_diffusion_setting.prompt,
neg_prompt=lcm_diffusion_setting.negative_prompt,
init_image=None,
strength=1.0,
num_inference_steps=lcm_diffusion_setting.inference_steps,
)
]
else:
return [
self.pipeline.generate(
prompt=lcm_diffusion_setting.prompt,
neg_prompt=lcm_diffusion_setting.negative_prompt,
init_image=lcm_diffusion_setting.init_image,
strength=lcm_diffusion_setting.strength,
num_inference_steps=lcm_diffusion_setting.inference_steps,
)
]
def _is_valid_mode(
self,
modes: List,
) -> bool:
return modes.count(True) == 1 or modes.count(False) == 3
def _validate_mode(
self,
modes: List,
) -> None:
if not self._is_valid_mode(modes):
raise ValueError("Invalid mode,delete configs/settings.yaml and retry!")
def init(
self,
device: str = "cpu",
lcm_diffusion_setting: LCMDiffusionSetting = LCMDiffusionSetting(),
) -> None:
# Mode validation either LCM LoRA or OpenVINO or GGUF
modes = [
lcm_diffusion_setting.use_gguf_model,
lcm_diffusion_setting.use_openvino,
lcm_diffusion_setting.use_lcm_lora,
]
self._validate_mode(modes)
self.device = device
self.use_openvino = lcm_diffusion_setting.use_openvino
model_id = lcm_diffusion_setting.lcm_model_id
use_local_model = lcm_diffusion_setting.use_offline_model
use_tiny_auto_encoder = lcm_diffusion_setting.use_tiny_auto_encoder
use_lora = lcm_diffusion_setting.use_lcm_lora
lcm_lora: LCMLora = lcm_diffusion_setting.lcm_lora
token_merging = lcm_diffusion_setting.token_merging
self.ov_model_id = lcm_diffusion_setting.openvino_lcm_model_id
if lcm_diffusion_setting.diffusion_task == DiffusionTask.image_to_image.value:
lcm_diffusion_setting.init_image = resize_pil_image(
lcm_diffusion_setting.init_image,
lcm_diffusion_setting.image_width,
lcm_diffusion_setting.image_height,
)
if (
self.pipeline is None
or self.previous_model_id != model_id
or self.previous_use_tae_sd != use_tiny_auto_encoder
or self.previous_lcm_lora_base_id != lcm_lora.base_model_id
or self.previous_lcm_lora_id != lcm_lora.lcm_lora_id
or self.previous_use_lcm_lora != use_lora
or self.previous_ov_model_id != self.ov_model_id
or self.previous_token_merging != token_merging
or self.previous_safety_checker != lcm_diffusion_setting.use_safety_checker
or self.previous_use_openvino != lcm_diffusion_setting.use_openvino
or self.previous_use_gguf_model != lcm_diffusion_setting.use_gguf_model
or self.previous_gguf_model != lcm_diffusion_setting.gguf_model
or (
self.use_openvino
and (
self.previous_task_type != lcm_diffusion_setting.diffusion_task
or self.previous_lora != lcm_diffusion_setting.lora
)
)
or lcm_diffusion_setting.rebuild_pipeline
):
if self.use_openvino and is_openvino_device():
if self.pipeline:
del self.pipeline
self.pipeline = None
gc.collect()
self.is_openvino_init = True
if (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.text_to_image.value
):
print(
f"***** Init Text to image (OpenVINO) - {self.ov_model_id} *****"
)
if "flux" in self.ov_model_id.lower():
print("Loading OpenVINO Flux pipeline")
self.pipeline = get_flux_pipeline(
self.ov_model_id,
lcm_diffusion_setting.use_tiny_auto_encoder,
)
elif self._is_hetero_pipeline():
self._load_ov_hetero_pipeline()
else:
self.pipeline = get_ov_text_to_image_pipeline(
self.ov_model_id,
use_local_model,
)
elif (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.image_to_image.value
):
if not self.pipeline and self._is_hetero_pipeline():
self._load_ov_hetero_pipeline()
else:
print(
f"***** Image to image (OpenVINO) - {self.ov_model_id} *****"
)
self.pipeline = get_ov_image_to_image_pipeline(
self.ov_model_id,
use_local_model,
)
elif lcm_diffusion_setting.use_gguf_model:
model = lcm_diffusion_setting.gguf_model.diffusion_path
print(f"***** Init Text to image (GGUF) - {model} *****")
# if self.pipeline:
# self.pipeline.terminate()
# del self.pipeline
# self.pipeline = None
self._init_gguf_diffusion(lcm_diffusion_setting)
else:
if self.pipeline or self.img_to_img_pipeline:
self.pipeline = None
self.img_to_img_pipeline = None
gc.collect()
controlnet_args = load_controlnet_adapters(lcm_diffusion_setting)
if use_lora:
print(
f"***** Init LCM-LoRA pipeline - {lcm_lora.base_model_id} *****"
)
self.pipeline = get_lcm_lora_pipeline(
lcm_lora.base_model_id,
lcm_lora.lcm_lora_id,
use_local_model,
torch_data_type=self.torch_data_type,
pipeline_args=controlnet_args,
)
else:
print(f"***** Init LCM Model pipeline - {model_id} *****")
self.pipeline = get_lcm_model_pipeline(
model_id,
use_local_model,
controlnet_args,
)
self.img_to_img_pipeline = get_image_to_image_pipeline(self.pipeline)
if tomesd and token_merging > 0.001:
print(f"***** Token Merging: {token_merging} *****")
tomesd.apply_patch(self.pipeline, ratio=token_merging)
tomesd.apply_patch(self.img_to_img_pipeline, ratio=token_merging)
if use_tiny_auto_encoder:
if self.use_openvino and is_openvino_device():
if self.pipeline.__class__.__name__ != "OVFluxPipeline":
print("Using Tiny Auto Encoder (OpenVINO)")
ov_load_taesd(
self.pipeline,
use_local_model,
)
else:
print("Using Tiny Auto Encoder")
load_taesd(
self.pipeline,
use_local_model,
self.torch_data_type,
)
load_taesd(
self.img_to_img_pipeline,
use_local_model,
self.torch_data_type,
)
if not self.use_openvino and not is_openvino_device():
self._pipeline_to_device()
if not self._is_hetero_pipeline():
if (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.image_to_image.value
and lcm_diffusion_setting.use_openvino
):
self.pipeline.scheduler = LCMScheduler.from_config(
self.pipeline.scheduler.config,
)
else:
if not lcm_diffusion_setting.use_gguf_model:
self._update_lcm_scheduler_params()
if use_lora:
self._add_freeu()
self.previous_model_id = model_id
self.previous_ov_model_id = self.ov_model_id
self.previous_use_tae_sd = use_tiny_auto_encoder
self.previous_lcm_lora_base_id = lcm_lora.base_model_id
self.previous_lcm_lora_id = lcm_lora.lcm_lora_id
self.previous_use_lcm_lora = use_lora
self.previous_token_merging = lcm_diffusion_setting.token_merging
self.previous_safety_checker = lcm_diffusion_setting.use_safety_checker
self.previous_use_openvino = lcm_diffusion_setting.use_openvino
self.previous_task_type = lcm_diffusion_setting.diffusion_task
self.previous_lora = lcm_diffusion_setting.lora.model_copy(deep=True)
self.previous_use_gguf_model = lcm_diffusion_setting.use_gguf_model
self.previous_gguf_model = lcm_diffusion_setting.gguf_model.model_copy(
deep=True
)
lcm_diffusion_setting.rebuild_pipeline = False
if (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.text_to_image.value
):
print(f"Pipeline : {self.pipeline}")
elif (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.image_to_image.value
):
if self.use_openvino and is_openvino_device():
print(f"Pipeline : {self.pipeline}")
else:
print(f"Pipeline : {self.img_to_img_pipeline}")
if self.use_openvino:
if lcm_diffusion_setting.lora.enabled:
print("Warning: Lora models not supported on OpenVINO mode")
elif not lcm_diffusion_setting.use_gguf_model:
adapters = self.pipeline.get_active_adapters()
print(f"Active adapters : {adapters}")
def _get_timesteps(self):
time_steps = self.pipeline.scheduler.config.get("timesteps")
time_steps_value = [int(time_steps)] if time_steps else None
return time_steps_value
def generate(
self,
lcm_diffusion_setting: LCMDiffusionSetting,
reshape: bool = False,
) -> Any:
guidance_scale = lcm_diffusion_setting.guidance_scale
img_to_img_inference_steps = lcm_diffusion_setting.inference_steps
check_step_value = int(
lcm_diffusion_setting.inference_steps * lcm_diffusion_setting.strength
)
if (
lcm_diffusion_setting.diffusion_task == DiffusionTask.image_to_image.value
and check_step_value < 1
):
img_to_img_inference_steps = ceil(1 / lcm_diffusion_setting.strength)
print(
f"Strength: {lcm_diffusion_setting.strength},{img_to_img_inference_steps}"
)
pipeline_extra_args = {}
if lcm_diffusion_setting.use_seed:
cur_seed = lcm_diffusion_setting.seed
# for multiple images with a fixed seed, use sequential seeds
seeds = [(cur_seed + i) for i in range(lcm_diffusion_setting.number_of_images)]
else:
seeds = [random.randint(0,999999999) for i in range(lcm_diffusion_setting.number_of_images)]
if self.use_openvino:
# no support for generators; try at least to ensure reproducible results for single images
np.random.seed(seeds[0])
if self._is_hetero_pipeline():
torch.manual_seed(seeds[0])
lcm_diffusion_setting.seed=seeds[0]
else:
pipeline_extra_args['generator'] = [
torch.Generator(device=self.device).manual_seed(s) for s in seeds]
is_openvino_pipe = lcm_diffusion_setting.use_openvino and is_openvino_device()
if is_openvino_pipe and not self._is_hetero_pipeline():
print("Using OpenVINO")
if reshape and not self.is_openvino_init:
print("Reshape and compile")
self.pipeline.reshape(
batch_size=-1,
height=lcm_diffusion_setting.image_height,
width=lcm_diffusion_setting.image_width,
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
)
self.pipeline.compile()
if self.is_openvino_init:
self.is_openvino_init = False
if is_openvino_pipe and self._is_hetero_pipeline():
return self._generate_images_hetero_compute(lcm_diffusion_setting)
elif lcm_diffusion_setting.use_gguf_model:
return self._generate_images_gguf(lcm_diffusion_setting)
if lcm_diffusion_setting.clip_skip > 1:
# We follow the convention that "CLIP Skip == 2" means "skip
# the last layer", so "CLIP Skip == 1" means "no skipping"
pipeline_extra_args["clip_skip"] = lcm_diffusion_setting.clip_skip - 1
if not lcm_diffusion_setting.use_safety_checker:
self.pipeline.safety_checker = None
if (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.image_to_image.value
and not is_openvino_pipe
):
self.img_to_img_pipeline.safety_checker = None
if (
not lcm_diffusion_setting.use_lcm_lora
and not lcm_diffusion_setting.use_openvino
and lcm_diffusion_setting.guidance_scale != 1.0
):
print("Not using LCM-LoRA so setting guidance_scale 1.0")
guidance_scale = 1.0
controlnet_args = update_controlnet_arguments(lcm_diffusion_setting)
if lcm_diffusion_setting.use_openvino:
if (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.text_to_image.value
):
result_images = self.pipeline(
prompt=lcm_diffusion_setting.prompt,
negative_prompt=lcm_diffusion_setting.negative_prompt,
num_inference_steps=lcm_diffusion_setting.inference_steps,
guidance_scale=guidance_scale,
width=lcm_diffusion_setting.image_width,
height=lcm_diffusion_setting.image_height,
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
).images
elif (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.image_to_image.value
):
result_images = self.pipeline(
image=lcm_diffusion_setting.init_image,
strength=lcm_diffusion_setting.strength,
prompt=lcm_diffusion_setting.prompt,
negative_prompt=lcm_diffusion_setting.negative_prompt,
num_inference_steps=img_to_img_inference_steps * 3,
guidance_scale=guidance_scale,
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
).images
else:
if (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.text_to_image.value
):
result_images = self.pipeline(
prompt=lcm_diffusion_setting.prompt,
negative_prompt=lcm_diffusion_setting.negative_prompt,
num_inference_steps=lcm_diffusion_setting.inference_steps,
guidance_scale=guidance_scale,
width=lcm_diffusion_setting.image_width,
height=lcm_diffusion_setting.image_height,
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
timesteps=self._get_timesteps(),
**pipeline_extra_args,
**controlnet_args,
).images
elif (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.image_to_image.value
):
result_images = self.img_to_img_pipeline(
image=lcm_diffusion_setting.init_image,
strength=lcm_diffusion_setting.strength,
prompt=lcm_diffusion_setting.prompt,
negative_prompt=lcm_diffusion_setting.negative_prompt,
num_inference_steps=img_to_img_inference_steps,
guidance_scale=guidance_scale,
width=lcm_diffusion_setting.image_width,
height=lcm_diffusion_setting.image_height,
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
**pipeline_extra_args,
**controlnet_args,
).images
for (i, seed) in enumerate(seeds):
result_images[i].info['image_seed'] = seed
return result_images
def _init_gguf_diffusion(
self,
lcm_diffusion_setting: LCMDiffusionSetting,
):
config = ModelConfig()
config.model_path = lcm_diffusion_setting.gguf_model.diffusion_path
config.diffusion_model_path = lcm_diffusion_setting.gguf_model.diffusion_path
config.clip_l_path = lcm_diffusion_setting.gguf_model.clip_path
config.t5xxl_path = lcm_diffusion_setting.gguf_model.t5xxl_path
config.vae_path = lcm_diffusion_setting.gguf_model.vae_path
config.n_threads = GGUF_THREADS
print(f"GGUF Threads : {GGUF_THREADS} ")
print("GGUF - Model config")
pprint(lcm_diffusion_setting.gguf_model.model_dump())
self.pipeline = GGUFDiffusion(
get_app_path(), # Place DLL in fastsdcpu folder
config,
True,
)
def _generate_images_gguf(
self,
lcm_diffusion_setting: LCMDiffusionSetting,
):
if lcm_diffusion_setting.diffusion_task == DiffusionTask.text_to_image.value:
t2iconfig = Txt2ImgConfig()
t2iconfig.prompt = lcm_diffusion_setting.prompt
t2iconfig.batch_count = lcm_diffusion_setting.number_of_images
t2iconfig.cfg_scale = lcm_diffusion_setting.guidance_scale
t2iconfig.height = lcm_diffusion_setting.image_height
t2iconfig.width = lcm_diffusion_setting.image_width
t2iconfig.sample_steps = lcm_diffusion_setting.inference_steps
t2iconfig.sample_method = SampleMethod.EULER
if lcm_diffusion_setting.use_seed:
t2iconfig.seed = lcm_diffusion_setting.seed
else:
t2iconfig.seed = -1
return self.pipeline.generate_text2mg(t2iconfig)
|