Spaces:
Running
Running
import streamlit as st | |
import torch | |
from transformers import BertConfig, BertForSequenceClassification, BertTokenizer | |
import numpy as np | |
# Load the model and tokenizer | |
def load_model(): | |
tokenizer = BertTokenizer.from_pretrained('beomi/kcbert-base') | |
config = BertConfig.from_pretrained('beomi/kcbert-base', num_labels=7) | |
model = BertForSequenceClassification.from_pretrained('beomi/kcbert-base', config=config) | |
model_state_dict = torch.load('sentiment7_model_acc0.9653.pth', map_location=torch.device('cpu')) # cpu 사용 | |
model.load_state_dict(model_state_dict) | |
model.eval() | |
return model, tokenizer | |
model, tokenizer = load_model() | |
# Define the inference function | |
def inference(input_doc): | |
inputs = tokenizer(input_doc, return_tensors='pt') | |
outputs = model(**inputs) | |
probs = torch.softmax(outputs.logits, dim=1).squeeze().tolist() | |
class_idx = {'공포': 0, '놀람': 1, '분노': 2, '슬픔': 3, '중립': 4, '행복': 5, '혐오': 6} | |
results = {class_name: prob for class_name, prob in zip(class_idx, probs)} | |
# Find the class with the highest probability | |
max_prob_class = max(results, key=results.get) | |
max_prob = results[max_prob_class] | |
# Display results | |
return [results, f"가장 강하게 나타난 감정: {max_prob_class}"] | |
''' for class_name, prob in results.items(): | |
print(f"{class_name}: {prob:.2%}")''' | |
# Set up the Streamlit interface | |
st.title('감정분석(Sentiment Analysis)') | |
st.markdown('<small style="color:grey;">글에 나타난 공포, 놀람, 분노, 슬픔, 중립, 행복, 혐오의 정도를 비율로 알려드립니다.</small>', unsafe_allow_html=True) | |
user_input = st.text_area("이 곳에 글 입력(100자 이하 권장):") | |
if st.button('시작'): | |
result = inference(user_input) | |
st.write(result[0]) | |
st.write(result[1]) | |