sentiment_7 / app.py
YEINJEONG's picture
Update app.py
96cc9a9 verified
import streamlit as st
import torch
from transformers import BertConfig, BertForSequenceClassification, BertTokenizer
import numpy as np
# Load the model and tokenizer
def load_model():
tokenizer = BertTokenizer.from_pretrained('beomi/kcbert-base')
config = BertConfig.from_pretrained('beomi/kcbert-base', num_labels=7)
model = BertForSequenceClassification.from_pretrained('beomi/kcbert-base', config=config)
model_state_dict = torch.load('sentiment7_model_acc0.9653.pth', map_location=torch.device('cpu')) # cpu 사용
model.load_state_dict(model_state_dict)
model.eval()
return model, tokenizer
model, tokenizer = load_model()
# Define the inference function
def inference(input_doc):
inputs = tokenizer(input_doc, return_tensors='pt')
outputs = model(**inputs)
probs = torch.softmax(outputs.logits, dim=1).squeeze().tolist()
class_idx = {'공포': 0, '놀람': 1, '분노': 2, '슬픔': 3, '중립': 4, '행복': 5, '혐오': 6}
results = {class_name: prob for class_name, prob in zip(class_idx, probs)}
# Find the class with the highest probability
max_prob_class = max(results, key=results.get)
max_prob = results[max_prob_class]
# Display results
return [results, f"가장 강하게 나타난 감정: {max_prob_class}"]
''' for class_name, prob in results.items():
print(f"{class_name}: {prob:.2%}")'''
# Set up the Streamlit interface
st.title('감정분석(Sentiment Analysis)')
st.markdown('<small style="color:grey;">글에 나타난 공포, 놀람, 분노, 슬픔, 중립, 행복, 혐오의 정도를 비율로 알려드립니다.</small>', unsafe_allow_html=True)
user_input = st.text_area("이 곳에 글 입력(100자 이하 권장):")
if st.button('시작'):
result = inference(user_input)
st.write(result[0])
st.write(result[1])