File size: 1,847 Bytes
224d6a6
 
 
 
 
 
 
 
 
 
 
96cc9a9
224d6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import streamlit as st
import torch
from transformers import BertConfig, BertForSequenceClassification, BertTokenizer
import numpy as np


# Load the model and tokenizer
def load_model():
    tokenizer = BertTokenizer.from_pretrained('beomi/kcbert-base')
    config = BertConfig.from_pretrained('beomi/kcbert-base', num_labels=7)
    model = BertForSequenceClassification.from_pretrained('beomi/kcbert-base', config=config)
    model_state_dict = torch.load('sentiment7_model_acc0.9653.pth', map_location=torch.device('cpu')) # cpu 사용
    model.load_state_dict(model_state_dict)
    model.eval()
    return model, tokenizer

model, tokenizer = load_model()

# Define the inference function
def inference(input_doc):
    inputs = tokenizer(input_doc, return_tensors='pt')
    outputs = model(**inputs)
    probs = torch.softmax(outputs.logits, dim=1).squeeze().tolist()
    class_idx = {'공포': 0, '놀람': 1, '분노': 2, '슬픔': 3, '중립': 4, '행복': 5, '혐오': 6}
    results = {class_name: prob for class_name, prob in zip(class_idx, probs)}
    # Find the class with the highest probability
    max_prob_class = max(results, key=results.get)
    max_prob = results[max_prob_class]
    # Display results
    return [results, f"가장 강하게 나타난 감정: {max_prob_class}"]
    '''    for class_name, prob in results.items():
        print(f"{class_name}: {prob:.2%}")'''

# Set up the Streamlit interface
st.title('감정분석(Sentiment Analysis)')
st.markdown('<small style="color:grey;">글에 나타난 공포, 놀람, 분노, 슬픔, 중립, 행복, 혐오의 정도를 비율로 알려드립니다.</small>', unsafe_allow_html=True)
user_input = st.text_area("이 곳에 글 입력(100자 이하 권장):")
if st.button('시작'):
    result = inference(user_input)
    st.write(result[0])
    st.write(result[1])