test / app.py
Xeraphinite's picture
Update app.py
977686b verified
raw
history blame
6.32 kB
import os
import numpy as np
import random
import time
import gradio as gr
from runner import Runner
import matplotlib.pyplot as plt
def show_mask(mask, ax, color='blue'):
if color == 'blue':
# reference, blue
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
else:
# target, green
color = np.array([78 / 255, 238 / 255, 148 / 255, 0.6])
# if random_color:
# color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
# else:
# color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels == 1]
neg_points = coords[labels == 0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white',
linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white',
linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
def show_img_point_box_mask(img, input_point=None, input_label=None, box=None, masks=None, save_path=None, mode='mask', color='blue'):
if mode == 'point':
# point
plt.figure(figsize=(10, 10))
plt.imshow(img)
show_points(input_point, input_label, plt.gca())
plt.axis('on')
plt.savefig(save_path, bbox_inches='tight')
elif mode == 'box':
# box
plt.figure(figsize=(10, 10))
plt.imshow(img)
show_box(box, plt.gca())
plt.axis('on')
plt.savefig(save_path, bbox_inches='tight')
else:
# mask
plt.figure(figsize=(10, 10))
plt.imshow(img)
show_mask(masks, plt.gca(), color=color)
plt.axis('off')
plt.savefig(save_path, bbox_inches='tight')
plt.close()
def create_oss_demo(
runner: Runner,
pipe: None = None
) -> gr.Blocks:
examples = [
['./gradio_demo/images/horse1.png', './gradio_demo/images/horse2.png', './gradio_demo/images/horse3.png'],
['./gradio_demo/images/hmbb1.png', './gradio_demo/images/hmbb2.png', './gradio_demo/images/hmbb3.png'],
['./gradio_demo/images/earth1.png', './gradio_demo/images/earth2.png', './gradio_demo/images/earth3.png'],
['./gradio_demo/images/elephant1.png', './gradio_demo/images/elephant2.png', './gradio_demo/images/elephant3.png'],
['./gradio_demo/images/dinosaur1.png', './gradio_demo/images/dinosaur2.png', './gradio_demo/images/dinosaur3.png'],
]
with gr.Blocks() as oss_demo:
with gr.Column():
# inputs
with gr.Row():
img_input_prompt = gr.ImageMask(label='Prompt (提示图)')
img_input_target1 = gr.Image(label='Target 1 (测试图1)')
img_input_target2 = gr.Image(label='Target 2 (测试图2)')
version = gr.inputs.Radio(['version 1 (🔺 multiple instances 🔻 whole, 🔻 part)',
'version 2 (🔻 multiple instances 🔺 whole, 🔻 part)',
'version 3 (🔻 multiple instances 🔻 whole, 🔺 part)'],
type="value", default='version 1 (🔺 whole, 🔻 part)',
label='Multiple Instances (version 1), Single Instance (version 2), Part of a object (version 3)')
with gr.Row():
submit1 = gr.Button("提交 (Submit)")
clear = gr.Button("清除 (Clear)")
info = gr.Text(label="Processing result: ", interactive=False)
# decision
K = gr.Slider(0, 10, 10, step=1, label="Controllable mask output", interactive=True)
submit2 = gr.Button("提交 (Submit)")
# outputs
with gr.Row():
img_output_pmt = gr.Image(label='Prompt (提示图)')
img_output_tar1 = gr.Image(label='Output 1 (输出图1)')
img_output_tar2 = gr.Image(label='Output 2 (输出图2)')
# images
gr.Examples(
examples=examples,
fn=runner.inference_oss_ops,
inputs=[img_input_prompt, img_input_target1, img_input_target2],
outputs=info
)
submit1.click(
fn=runner.inference_oss_ops,
inputs=[img_input_prompt, img_input_target1, img_input_target2, version],
outputs=info
)
submit2.click(
fn=runner.controllable_mask_output,
inputs=K,
outputs=[img_output_pmt, img_output_tar1, img_output_tar2]
)
clear.click(
fn=runner.clear_fn,
inputs=None,
outputs=[img_input_prompt, img_input_target1, img_input_target2, info, img_output_pmt, img_output_tar1, img_output_tar2],
queue=False
)
return oss_demo
def create_vos_demo(
runner: Runner,
pipe: None = None
) -> gr.Interface:
raise NotImplementedError
def create_demo(
runner: Runner,
pipe: None = None
) -> gr.TabbedInterface:
title = "Matcher🎯: Segment Anything with One Shot Using All-Purpose Feature Matching<br> \
<div align='center'> \
<h2><a href='https://arxiv.org/abs/2305.13310' target='_blank' rel='noopener'>[paper]</a> \
<a href='https://github.com/aim-uofa/Matcher' target='_blank' rel='noopener'>[code]</a></h2> \
<h2>Matcher can segment anything with one shot by integrating an all-purpose feature extraction model and a class-agnostic segmentation model.</h2> \
<br> \
</div> \
"
oss_demo = create_oss_demo(runner=runner, pipe=pipe)
# vos_demo = create_vos_demo(runner=runner, pipe=pipe)
demo = gr.TabbedInterface(
[oss_demo,],
['OSS+OPS',], title=title)
return demo
if __name__ == '__main__':
pipe = None
HF_TOKEN = os.getenv('HF_TOKEN')
runner = Runner(HF_TOKEN)
# runner = None
demo = create_demo(runner, pipe)
demo.launch(enable_queue=False)