Spaces:
Runtime error
Runtime error
File size: 6,324 Bytes
ebb9c75 977686b ebb9c75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import os
import numpy as np
import random
import time
import gradio as gr
from runner import Runner
import matplotlib.pyplot as plt
def show_mask(mask, ax, color='blue'):
if color == 'blue':
# reference, blue
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
else:
# target, green
color = np.array([78 / 255, 238 / 255, 148 / 255, 0.6])
# if random_color:
# color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
# else:
# color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels == 1]
neg_points = coords[labels == 0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white',
linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white',
linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
def show_img_point_box_mask(img, input_point=None, input_label=None, box=None, masks=None, save_path=None, mode='mask', color='blue'):
if mode == 'point':
# point
plt.figure(figsize=(10, 10))
plt.imshow(img)
show_points(input_point, input_label, plt.gca())
plt.axis('on')
plt.savefig(save_path, bbox_inches='tight')
elif mode == 'box':
# box
plt.figure(figsize=(10, 10))
plt.imshow(img)
show_box(box, plt.gca())
plt.axis('on')
plt.savefig(save_path, bbox_inches='tight')
else:
# mask
plt.figure(figsize=(10, 10))
plt.imshow(img)
show_mask(masks, plt.gca(), color=color)
plt.axis('off')
plt.savefig(save_path, bbox_inches='tight')
plt.close()
def create_oss_demo(
runner: Runner,
pipe: None = None
) -> gr.Blocks:
examples = [
['./gradio_demo/images/horse1.png', './gradio_demo/images/horse2.png', './gradio_demo/images/horse3.png'],
['./gradio_demo/images/hmbb1.png', './gradio_demo/images/hmbb2.png', './gradio_demo/images/hmbb3.png'],
['./gradio_demo/images/earth1.png', './gradio_demo/images/earth2.png', './gradio_demo/images/earth3.png'],
['./gradio_demo/images/elephant1.png', './gradio_demo/images/elephant2.png', './gradio_demo/images/elephant3.png'],
['./gradio_demo/images/dinosaur1.png', './gradio_demo/images/dinosaur2.png', './gradio_demo/images/dinosaur3.png'],
]
with gr.Blocks() as oss_demo:
with gr.Column():
# inputs
with gr.Row():
img_input_prompt = gr.ImageMask(label='Prompt (提示图)')
img_input_target1 = gr.Image(label='Target 1 (测试图1)')
img_input_target2 = gr.Image(label='Target 2 (测试图2)')
version = gr.inputs.Radio(['version 1 (🔺 multiple instances 🔻 whole, 🔻 part)',
'version 2 (🔻 multiple instances 🔺 whole, 🔻 part)',
'version 3 (🔻 multiple instances 🔻 whole, 🔺 part)'],
type="value", default='version 1 (🔺 whole, 🔻 part)',
label='Multiple Instances (version 1), Single Instance (version 2), Part of a object (version 3)')
with gr.Row():
submit1 = gr.Button("提交 (Submit)")
clear = gr.Button("清除 (Clear)")
info = gr.Text(label="Processing result: ", interactive=False)
# decision
K = gr.Slider(0, 10, 10, step=1, label="Controllable mask output", interactive=True)
submit2 = gr.Button("提交 (Submit)")
# outputs
with gr.Row():
img_output_pmt = gr.Image(label='Prompt (提示图)')
img_output_tar1 = gr.Image(label='Output 1 (输出图1)')
img_output_tar2 = gr.Image(label='Output 2 (输出图2)')
# images
gr.Examples(
examples=examples,
fn=runner.inference_oss_ops,
inputs=[img_input_prompt, img_input_target1, img_input_target2],
outputs=info
)
submit1.click(
fn=runner.inference_oss_ops,
inputs=[img_input_prompt, img_input_target1, img_input_target2, version],
outputs=info
)
submit2.click(
fn=runner.controllable_mask_output,
inputs=K,
outputs=[img_output_pmt, img_output_tar1, img_output_tar2]
)
clear.click(
fn=runner.clear_fn,
inputs=None,
outputs=[img_input_prompt, img_input_target1, img_input_target2, info, img_output_pmt, img_output_tar1, img_output_tar2],
queue=False
)
return oss_demo
def create_vos_demo(
runner: Runner,
pipe: None = None
) -> gr.Interface:
raise NotImplementedError
def create_demo(
runner: Runner,
pipe: None = None
) -> gr.TabbedInterface:
title = "Matcher🎯: Segment Anything with One Shot Using All-Purpose Feature Matching<br> \
<div align='center'> \
<h2><a href='https://arxiv.org/abs/2305.13310' target='_blank' rel='noopener'>[paper]</a> \
<a href='https://github.com/aim-uofa/Matcher' target='_blank' rel='noopener'>[code]</a></h2> \
<h2>Matcher can segment anything with one shot by integrating an all-purpose feature extraction model and a class-agnostic segmentation model.</h2> \
<br> \
</div> \
"
oss_demo = create_oss_demo(runner=runner, pipe=pipe)
# vos_demo = create_vos_demo(runner=runner, pipe=pipe)
demo = gr.TabbedInterface(
[oss_demo,],
['OSS+OPS',], title=title)
return demo
if __name__ == '__main__':
pipe = None
HF_TOKEN = os.getenv('HF_TOKEN')
runner = Runner(HF_TOKEN)
# runner = None
demo = create_demo(runner, pipe)
demo.launch(enable_queue=False) |