White74195's picture
Initial commit
6bd7867
import gradio as gr
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
# 示例:加载模型(这里用随机森林作为示例)
def load_model():
# 这里可以替换为你的模型加载逻辑
model = RandomForestClassifier()
# 假设我们有一些示例数据
X = np.array([[1, 2], [3, 4], [5, 6]])
y = np.array([0, 1, 0])
model.fit(X, y)
return model
model = load_model()
# 定义预测函数
def predict(price, sales, shop_rating):
# 将输入转换为模型需要的格式
input_data = np.array([[price, sales, shop_rating]])
prediction = model.predict(input_data)
return "爆款潜力高" if prediction[0] == 1 else "爆款潜力低"
# 创建 Gradio 界面
interface = gr.Interface(
fn=predict,
inputs=[
gr.Number(label="价格"),
gr.Number(label="销量"),
gr.Number(label="店铺评分"),
],
outputs=gr.Textbox(label="预测结果"),
title="爆款商品预测",
description="输入商品的价格、销量和店铺评分,预测是否有爆款潜力。",
)
# 启动应用
interface.launch()