Spaces:
Sleeping
Sleeping
Commit
·
6bd7867
1
Parent(s):
c2f9b63
Initial commit
Browse files- app.py +39 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.ensemble import RandomForestClassifier
|
5 |
+
|
6 |
+
# 示例:加载模型(这里用随机森林作为示例)
|
7 |
+
def load_model():
|
8 |
+
# 这里可以替换为你的模型加载逻辑
|
9 |
+
model = RandomForestClassifier()
|
10 |
+
# 假设我们有一些示例数据
|
11 |
+
X = np.array([[1, 2], [3, 4], [5, 6]])
|
12 |
+
y = np.array([0, 1, 0])
|
13 |
+
model.fit(X, y)
|
14 |
+
return model
|
15 |
+
|
16 |
+
model = load_model()
|
17 |
+
|
18 |
+
# 定义预测函数
|
19 |
+
def predict(price, sales, shop_rating):
|
20 |
+
# 将输入转换为模型需要的格式
|
21 |
+
input_data = np.array([[price, sales, shop_rating]])
|
22 |
+
prediction = model.predict(input_data)
|
23 |
+
return "爆款潜力高" if prediction[0] == 1 else "爆款潜力低"
|
24 |
+
|
25 |
+
# 创建 Gradio 界面
|
26 |
+
interface = gr.Interface(
|
27 |
+
fn=predict,
|
28 |
+
inputs=[
|
29 |
+
gr.Number(label="价格"),
|
30 |
+
gr.Number(label="销量"),
|
31 |
+
gr.Number(label="店铺评分"),
|
32 |
+
],
|
33 |
+
outputs=gr.Textbox(label="预测结果"),
|
34 |
+
title="爆款商品预测",
|
35 |
+
description="输入商品的价格、销量和店铺评分,预测是否有爆款潜力。",
|
36 |
+
)
|
37 |
+
|
38 |
+
# 启动应用
|
39 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
numpy
|
3 |
+
pandas
|
4 |
+
scikit-learn
|