Spaces:
Running
Running
import sys | |
import os | |
import copy | |
import uvicorn | |
import socket | |
import logging | |
import datetime | |
from models.vectorizer import Vectorizer | |
from models.prompt_search_engine import PromptSearchEngine | |
from models.data_reader import load_prompts_from_jsonl | |
from models.Query import Query, Query_Multiple, SearchResponse, SimilarPrompt | |
from decouple import config | |
from fastapi import FastAPI, HTTPException, Depends, Body | |
from sentence_transformers import SentenceTransformer | |
prompt_path = r"C:\Users\jov2bg\Desktop\PromptSearch\models\prompts_data.jsonl" | |
app = FastAPI(title="Search Prompt Engine", description="API for prompt search", version="1.0") | |
prompts = load_prompts_from_jsonl(prompt_path) | |
search_engine = PromptSearchEngine() | |
search_engine.add_prompts_to_vector_database(prompts) | |
def read_root(): | |
return {"message": "Prompt Search Engine is running!"} | |
async def search_prompts(query: Query, k: int = 3): | |
print(f'Prompt: {query.prompt}') | |
similar_prompts, distances = search_engine.most_similar(query.prompt, top_k=k) | |
print(f'Similar Prompts {similar_prompts}') | |
print(f'Distances {distances}') | |
print(40*'****') | |
# Format the response | |
response = [ | |
SimilarPrompt(prompt=prompt, distance=float(distance)) | |
for prompt, distance in zip(similar_prompts, distances) | |
] | |
return SearchResponse(results=response) | |
async def all_vectors(query: Query): | |
all_similarities = search_engine.cosine_similarity(query.prompt, search_engine.index) | |
response = [ | |
SimilarPrompt(prompt=prompt, distance=float(distance)) | |
for prompt, distance in all_similarities.items() | |
] | |
return SearchResponse(results=response) | |
if __name__ == "__main__": | |
localhost = socket.gethostbyname("localhost") | |
uvicorn.run(app, host=localhost, port=8000) |