search_engine / main.py
Vitomir Jovanović
Search Engine
01f5415
raw
history blame
1.89 kB
import sys
import os
import copy
import uvicorn
import socket
import logging
import datetime
from models.vectorizer import Vectorizer
from models.prompt_search_engine import PromptSearchEngine
from models.data_reader import load_prompts_from_jsonl
from models.Query import Query, Query_Multiple, SearchResponse, SimilarPrompt
from decouple import config
from fastapi import FastAPI, HTTPException, Depends, Body
from sentence_transformers import SentenceTransformer
prompt_path = r"C:\Users\jov2bg\Desktop\PromptSearch\models\prompts_data.jsonl"
app = FastAPI(title="Search Prompt Engine", description="API for prompt search", version="1.0")
prompts = load_prompts_from_jsonl(prompt_path)
search_engine = PromptSearchEngine()
search_engine.add_prompts_to_vector_database(prompts)
@app.get("/")
def read_root():
return {"message": "Prompt Search Engine is running!"}
@app.post("/search/")
async def search_prompts(query: Query, k: int = 3):
print(f'Prompt: {query.prompt}')
similar_prompts, distances = search_engine.most_similar(query.prompt, top_k=k)
print(f'Similar Prompts {similar_prompts}')
print(f'Distances {distances}')
print(40*'****')
# Format the response
response = [
SimilarPrompt(prompt=prompt, distance=float(distance))
for prompt, distance in zip(similar_prompts, distances)
]
return SearchResponse(results=response)
@app.post("/all_vectors_similarities/")
async def all_vectors(query: Query):
all_similarities = search_engine.cosine_similarity(query.prompt, search_engine.index)
response = [
SimilarPrompt(prompt=prompt, distance=float(distance))
for prompt, distance in all_similarities.items()
]
return SearchResponse(results=response)
if __name__ == "__main__":
localhost = socket.gethostbyname("localhost")
uvicorn.run(app, host=localhost, port=8000)