import sys import os import copy import uvicorn import socket import logging import datetime from models.vectorizer import Vectorizer from models.prompt_search_engine import PromptSearchEngine from models.data_reader import load_prompts_from_jsonl from models.Query import Query, Query_Multiple, SearchResponse, SimilarPrompt from decouple import config from fastapi import FastAPI, HTTPException, Depends, Body from sentence_transformers import SentenceTransformer prompt_path = r"C:\Users\jov2bg\Desktop\PromptSearch\models\prompts_data.jsonl" app = FastAPI(title="Search Prompt Engine", description="API for prompt search", version="1.0") prompts = load_prompts_from_jsonl(prompt_path) search_engine = PromptSearchEngine() search_engine.add_prompts_to_vector_database(prompts) @app.get("/") def read_root(): return {"message": "Prompt Search Engine is running!"} @app.post("/search/") async def search_prompts(query: Query, k: int = 3): print(f'Prompt: {query.prompt}') similar_prompts, distances = search_engine.most_similar(query.prompt, top_k=k) print(f'Similar Prompts {similar_prompts}') print(f'Distances {distances}') print(40*'****') # Format the response response = [ SimilarPrompt(prompt=prompt, distance=float(distance)) for prompt, distance in zip(similar_prompts, distances) ] return SearchResponse(results=response) @app.post("/all_vectors_similarities/") async def all_vectors(query: Query): all_similarities = search_engine.cosine_similarity(query.prompt, search_engine.index) response = [ SimilarPrompt(prompt=prompt, distance=float(distance)) for prompt, distance in all_similarities.items() ] return SearchResponse(results=response) if __name__ == "__main__": localhost = socket.gethostbyname("localhost") uvicorn.run(app, host=localhost, port=8000)