Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# Modified by Jialian Wu from https://github.com/facebookresearch/Detic/blob/main/train_net.py | |
import logging | |
import os | |
import sys | |
from collections import OrderedDict | |
import torch | |
from torch.nn.parallel import DistributedDataParallel | |
import time | |
import datetime | |
from fvcore.common.timer import Timer | |
import detectron2.utils.comm as comm | |
from detectron2.checkpoint import DetectionCheckpointer, PeriodicCheckpointer | |
from detectron2.config import get_cfg | |
from detectron2.data import ( | |
MetadataCatalog, | |
build_detection_test_loader, | |
) | |
from detectron2.engine import default_argument_parser, default_setup, launch | |
from detectron2.evaluation import ( | |
inference_on_dataset, | |
print_csv_format, | |
LVISEvaluator, | |
COCOEvaluator, | |
) | |
from detectron2.modeling import build_model | |
from detectron2.solver import build_lr_scheduler, build_optimizer | |
from detectron2.utils.events import ( | |
CommonMetricPrinter, | |
EventStorage, | |
JSONWriter, | |
TensorboardXWriter, | |
) | |
from detectron2.data.dataset_mapper import DatasetMapper | |
from detectron2.utils.logger import setup_logger | |
sys.path.insert(0, 'third_party/CenterNet2/projects/CenterNet2/') | |
from centernet.config import add_centernet_config | |
from grit.config import add_grit_config | |
from grit.data.custom_build_augmentation import build_custom_augmentation | |
from grit.data.custom_dataset_dataloader import build_custom_train_loader | |
from grit.data.custom_dataset_mapper import CustomDatasetMapper | |
from grit.custom_solver import build_custom_optimizer | |
from grit.evaluation.eval import GRiTCOCOEvaluator, GRiTVGEvaluator | |
logger = logging.getLogger("detectron2") | |
def do_test(cfg, model): | |
results = OrderedDict() | |
for d, dataset_name in enumerate(cfg.DATASETS.TEST): | |
mapper = None if cfg.INPUT.TEST_INPUT_TYPE == 'default' \ | |
else DatasetMapper( | |
cfg, False, augmentations=build_custom_augmentation(cfg, False)) | |
data_loader = build_detection_test_loader(cfg, dataset_name, mapper=mapper) | |
output_folder = os.path.join( | |
cfg.OUTPUT_DIR, "inference_{}".format(dataset_name)) | |
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type | |
if evaluator_type == 'coco': | |
evaluator = GRiTCOCOEvaluator(dataset_name, cfg, True, output_folder) | |
elif evaluator_type == 'vg': | |
evaluator = GRiTVGEvaluator(dataset_name, cfg, True, output_folder) | |
else: | |
raise NotImplementedError('We have not implemented the evaluator for {}'.format(evaluator_type)) | |
results[dataset_name] = inference_on_dataset( | |
model, data_loader, evaluator) | |
if comm.is_main_process(): | |
logger.info("Evaluation results for {} in csv format:".format( | |
dataset_name)) | |
print_csv_format(results[dataset_name]) | |
if len(results) == 1: | |
results = list(results.values())[0] | |
return results | |
def do_train(cfg, model, resume=False): | |
model.train() | |
if cfg.SOLVER.USE_CUSTOM_SOLVER: | |
optimizer = build_custom_optimizer(cfg, model) | |
else: | |
assert cfg.SOLVER.OPTIMIZER == 'SGD' | |
assert cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE != 'full_model' | |
optimizer = build_optimizer(cfg, model) | |
scheduler = build_lr_scheduler(cfg, optimizer) | |
checkpointer = DetectionCheckpointer( | |
model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler | |
) | |
start_iter = checkpointer.resume_or_load( | |
cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1 | |
if not resume: | |
start_iter = 0 | |
max_iter = cfg.SOLVER.MAX_ITER if cfg.SOLVER.TRAIN_ITER < 0 else cfg.SOLVER.TRAIN_ITER | |
periodic_checkpointer = PeriodicCheckpointer( | |
checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter | |
) | |
writers = ( | |
[ | |
CommonMetricPrinter(max_iter), | |
JSONWriter(os.path.join(cfg.OUTPUT_DIR, "metrics.json")), | |
TensorboardXWriter(cfg.OUTPUT_DIR), | |
] | |
if comm.is_main_process() | |
else [] | |
) | |
mapper = CustomDatasetMapper(cfg, True, augmentations=build_custom_augmentation(cfg, True)) | |
data_loader = build_custom_train_loader(cfg, mapper=mapper) | |
logger.info("Starting training from iteration {}".format(start_iter)) | |
with EventStorage(start_iter) as storage: | |
step_timer = Timer() | |
data_timer = Timer() | |
start_time = time.perf_counter() | |
for data, iteration in zip(data_loader, range(start_iter, max_iter)): | |
data_time = data_timer.seconds() | |
storage.put_scalars(data_time=data_time) | |
step_timer.reset() | |
iteration = iteration + 1 | |
storage.step() | |
loss_dict = model(data) | |
losses = sum( | |
loss for k, loss in loss_dict.items()) | |
assert torch.isfinite(losses).all(), loss_dict | |
loss_dict_reduced = {k: v.item() \ | |
for k, v in comm.reduce_dict(loss_dict).items()} | |
losses_reduced = sum(loss for loss in loss_dict_reduced.values()) | |
if comm.is_main_process(): | |
storage.put_scalars( | |
total_loss=losses_reduced, **loss_dict_reduced) | |
optimizer.zero_grad() | |
losses.backward() | |
optimizer.step() | |
storage.put_scalar( | |
"lr", optimizer.param_groups[0]["lr"], smoothing_hint=False) | |
step_time = step_timer.seconds() | |
storage.put_scalars(time=step_time) | |
data_timer.reset() | |
scheduler.step() | |
if (cfg.TEST.EVAL_PERIOD > 0 | |
and iteration % cfg.TEST.EVAL_PERIOD == 0 | |
and iteration != max_iter): | |
do_test(cfg, model) | |
comm.synchronize() | |
if iteration - start_iter > 5 and \ | |
(iteration % 20 == 0 or iteration == max_iter): | |
for writer in writers: | |
writer.write() | |
periodic_checkpointer.step(iteration) | |
total_time = time.perf_counter() - start_time | |
logger.info( | |
"Total training time: {}".format( | |
str(datetime.timedelta(seconds=int(total_time))))) | |
def setup(args): | |
""" | |
Create configs and perform basic setups. | |
""" | |
cfg = get_cfg() | |
add_centernet_config(cfg) | |
add_grit_config(cfg) | |
cfg.merge_from_file(args.config_file) | |
cfg.merge_from_list(args.opts) | |
if args.output_dir_name: | |
cfg.OUTPUT_DIR = args.output_dir_name | |
logger.info('OUTPUT_DIR: {}'.format(cfg.OUTPUT_DIR)) | |
if args.test_task: | |
cfg.MODEL.TEST_TASK = args.test_task | |
cfg.freeze() | |
default_setup(cfg, args) | |
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), color=False, name="grit") | |
return cfg | |
def main(args): | |
cfg = setup(args) | |
model = build_model(cfg) | |
logger.info("Model:\n{}".format(model)) | |
if args.eval_only: | |
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( | |
cfg.MODEL.WEIGHTS, resume=args.resume | |
) | |
return do_test(cfg, model) | |
distributed = comm.get_world_size() > 1 | |
if distributed: | |
model = DistributedDataParallel( | |
model, device_ids=[comm.get_local_rank()], broadcast_buffers=False, | |
find_unused_parameters=cfg.FIND_UNUSED_PARAM | |
) | |
do_train(cfg, model, resume=args.resume) | |
return | |
if __name__ == "__main__": | |
args = default_argument_parser() | |
args.add_argument("--output-dir-name", type=str, default='./output/GRiT') | |
args.add_argument("--num-gpus-per-machine", type=int, default=8) | |
args.add_argument("--test-task", type=str, default='', help="Choose a task to have GRiT perform") | |
args = args.parse_args() | |
if args.num_machines == 1: | |
args.dist_url = 'tcp://127.0.0.1:{}'.format( | |
torch.randint(11111, 60000, (1,))[0].item()) | |
else: | |
raise NotImplementedError('Use train_deepspeed.py for multi-node training') | |
print("Command Line Args:", args) | |
launch( | |
main, | |
args.num_gpus_per_machine, | |
num_machines=args.num_machines, | |
machine_rank=args.machine_rank, | |
dist_url=args.dist_url, | |
args=(args,), | |
) | |