Spaces:
Runtime error
Runtime error
File size: 8,292 Bytes
c709b60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Jialian Wu from https://github.com/facebookresearch/Detic/blob/main/train_net.py
import logging
import os
import sys
from collections import OrderedDict
import torch
from torch.nn.parallel import DistributedDataParallel
import time
import datetime
from fvcore.common.timer import Timer
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer, PeriodicCheckpointer
from detectron2.config import get_cfg
from detectron2.data import (
MetadataCatalog,
build_detection_test_loader,
)
from detectron2.engine import default_argument_parser, default_setup, launch
from detectron2.evaluation import (
inference_on_dataset,
print_csv_format,
LVISEvaluator,
COCOEvaluator,
)
from detectron2.modeling import build_model
from detectron2.solver import build_lr_scheduler, build_optimizer
from detectron2.utils.events import (
CommonMetricPrinter,
EventStorage,
JSONWriter,
TensorboardXWriter,
)
from detectron2.data.dataset_mapper import DatasetMapper
from detectron2.utils.logger import setup_logger
sys.path.insert(0, 'third_party/CenterNet2/projects/CenterNet2/')
from centernet.config import add_centernet_config
from grit.config import add_grit_config
from grit.data.custom_build_augmentation import build_custom_augmentation
from grit.data.custom_dataset_dataloader import build_custom_train_loader
from grit.data.custom_dataset_mapper import CustomDatasetMapper
from grit.custom_solver import build_custom_optimizer
from grit.evaluation.eval import GRiTCOCOEvaluator, GRiTVGEvaluator
logger = logging.getLogger("detectron2")
def do_test(cfg, model):
results = OrderedDict()
for d, dataset_name in enumerate(cfg.DATASETS.TEST):
mapper = None if cfg.INPUT.TEST_INPUT_TYPE == 'default' \
else DatasetMapper(
cfg, False, augmentations=build_custom_augmentation(cfg, False))
data_loader = build_detection_test_loader(cfg, dataset_name, mapper=mapper)
output_folder = os.path.join(
cfg.OUTPUT_DIR, "inference_{}".format(dataset_name))
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
if evaluator_type == 'coco':
evaluator = GRiTCOCOEvaluator(dataset_name, cfg, True, output_folder)
elif evaluator_type == 'vg':
evaluator = GRiTVGEvaluator(dataset_name, cfg, True, output_folder)
else:
raise NotImplementedError('We have not implemented the evaluator for {}'.format(evaluator_type))
results[dataset_name] = inference_on_dataset(
model, data_loader, evaluator)
if comm.is_main_process():
logger.info("Evaluation results for {} in csv format:".format(
dataset_name))
print_csv_format(results[dataset_name])
if len(results) == 1:
results = list(results.values())[0]
return results
def do_train(cfg, model, resume=False):
model.train()
if cfg.SOLVER.USE_CUSTOM_SOLVER:
optimizer = build_custom_optimizer(cfg, model)
else:
assert cfg.SOLVER.OPTIMIZER == 'SGD'
assert cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE != 'full_model'
optimizer = build_optimizer(cfg, model)
scheduler = build_lr_scheduler(cfg, optimizer)
checkpointer = DetectionCheckpointer(
model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler
)
start_iter = checkpointer.resume_or_load(
cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1
if not resume:
start_iter = 0
max_iter = cfg.SOLVER.MAX_ITER if cfg.SOLVER.TRAIN_ITER < 0 else cfg.SOLVER.TRAIN_ITER
periodic_checkpointer = PeriodicCheckpointer(
checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter
)
writers = (
[
CommonMetricPrinter(max_iter),
JSONWriter(os.path.join(cfg.OUTPUT_DIR, "metrics.json")),
TensorboardXWriter(cfg.OUTPUT_DIR),
]
if comm.is_main_process()
else []
)
mapper = CustomDatasetMapper(cfg, True, augmentations=build_custom_augmentation(cfg, True))
data_loader = build_custom_train_loader(cfg, mapper=mapper)
logger.info("Starting training from iteration {}".format(start_iter))
with EventStorage(start_iter) as storage:
step_timer = Timer()
data_timer = Timer()
start_time = time.perf_counter()
for data, iteration in zip(data_loader, range(start_iter, max_iter)):
data_time = data_timer.seconds()
storage.put_scalars(data_time=data_time)
step_timer.reset()
iteration = iteration + 1
storage.step()
loss_dict = model(data)
losses = sum(
loss for k, loss in loss_dict.items())
assert torch.isfinite(losses).all(), loss_dict
loss_dict_reduced = {k: v.item() \
for k, v in comm.reduce_dict(loss_dict).items()}
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
if comm.is_main_process():
storage.put_scalars(
total_loss=losses_reduced, **loss_dict_reduced)
optimizer.zero_grad()
losses.backward()
optimizer.step()
storage.put_scalar(
"lr", optimizer.param_groups[0]["lr"], smoothing_hint=False)
step_time = step_timer.seconds()
storage.put_scalars(time=step_time)
data_timer.reset()
scheduler.step()
if (cfg.TEST.EVAL_PERIOD > 0
and iteration % cfg.TEST.EVAL_PERIOD == 0
and iteration != max_iter):
do_test(cfg, model)
comm.synchronize()
if iteration - start_iter > 5 and \
(iteration % 20 == 0 or iteration == max_iter):
for writer in writers:
writer.write()
periodic_checkpointer.step(iteration)
total_time = time.perf_counter() - start_time
logger.info(
"Total training time: {}".format(
str(datetime.timedelta(seconds=int(total_time)))))
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_centernet_config(cfg)
add_grit_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
if args.output_dir_name:
cfg.OUTPUT_DIR = args.output_dir_name
logger.info('OUTPUT_DIR: {}'.format(cfg.OUTPUT_DIR))
if args.test_task:
cfg.MODEL.TEST_TASK = args.test_task
cfg.freeze()
default_setup(cfg, args)
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), color=False, name="grit")
return cfg
def main(args):
cfg = setup(args)
model = build_model(cfg)
logger.info("Model:\n{}".format(model))
if args.eval_only:
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
return do_test(cfg, model)
distributed = comm.get_world_size() > 1
if distributed:
model = DistributedDataParallel(
model, device_ids=[comm.get_local_rank()], broadcast_buffers=False,
find_unused_parameters=cfg.FIND_UNUSED_PARAM
)
do_train(cfg, model, resume=args.resume)
return
if __name__ == "__main__":
args = default_argument_parser()
args.add_argument("--output-dir-name", type=str, default='./output/GRiT')
args.add_argument("--num-gpus-per-machine", type=int, default=8)
args.add_argument("--test-task", type=str, default='', help="Choose a task to have GRiT perform")
args = args.parse_args()
if args.num_machines == 1:
args.dist_url = 'tcp://127.0.0.1:{}'.format(
torch.randint(11111, 60000, (1,))[0].item())
else:
raise NotImplementedError('Use train_deepspeed.py for multi-node training')
print("Command Line Args:", args)
launch(
main,
args.num_gpus_per_machine,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)
|