Victorlopo21 commited on
Commit
30d86e6
·
1 Parent(s): c1bdfd2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -6
app.py CHANGED
@@ -27,12 +27,12 @@ Shown is the stock prediction of the next working day taking into account the la
27
 
28
  model = keras.models.load_model('model_stock_prices.h5')
29
 
30
- working_days = st.sidebar.slider("Working days to take into account in the prediction", min_value = 10, max_value=30)
31
  working_days = int(working_days)
32
  # downloading the last 10 days to make the prediction
33
 
34
  today = date.today()
35
- days_ago = today - timedelta(days=30)
36
 
37
  # we get the last 20 days and keep just the last 10 working days, which have prices
38
  nasdaq = yf.Ticker("^IXIC")
@@ -40,7 +40,7 @@ hist = nasdaq.history(start=days_ago, end=today)
40
  hist = hist.drop(columns=['Dividends', 'Stock Splits'])
41
 
42
  # keeping the last 10 data points
43
- hist = hist[-working_days:]
44
 
45
 
46
  inflation = []
@@ -75,7 +75,7 @@ inp = scaler.transform(hist.to_numpy())
75
  df = inp
76
  temp_df = pd.DataFrame(inp, columns = ['Open','High','Low','Close','Volume','Inflation', 'CPI', 'Quarter_end'])
77
  ds = []
78
- ds.append(temp_df[0:working_days])
79
  ds = np.array(ds)
80
 
81
 
@@ -103,11 +103,22 @@ prediction.append(final_prediction)
103
  print(prediction)
104
  plt.figure(figsize = (20,10))
105
  plt.plot(prediction, label="Prediction")
106
- plt.plot(hist['Close'].to_list()[-working_days:], label="Previous")
107
  plt.ylabel('Price US$', fontsize = 15 )
108
  plt.xlabel('Working Days', fontsize = 15 )
109
  plt.title("NASDAQ Stock Prediction", fontsize = 20)
110
  plt.legend()
111
  plt.grid()
112
 
113
- st.pyplot(plt)
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
  model = keras.models.load_model('model_stock_prices.h5')
29
 
30
+ working_days = st.sidebar.slider("Working days to take into account in the prediction", min_value = 10, max_value=20)
31
  working_days = int(working_days)
32
  # downloading the last 10 days to make the prediction
33
 
34
  today = date.today()
35
+ days_ago = today - timedelta(days=20)
36
 
37
  # we get the last 20 days and keep just the last 10 working days, which have prices
38
  nasdaq = yf.Ticker("^IXIC")
 
40
  hist = hist.drop(columns=['Dividends', 'Stock Splits'])
41
 
42
  # keeping the last 10 data points
43
+ hist = hist[-10:]
44
 
45
 
46
  inflation = []
 
75
  df = inp
76
  temp_df = pd.DataFrame(inp, columns = ['Open','High','Low','Close','Volume','Inflation', 'CPI', 'Quarter_end'])
77
  ds = []
78
+ ds.append(temp_df[0:10])
79
  ds = np.array(ds)
80
 
81
 
 
103
  print(prediction)
104
  plt.figure(figsize = (20,10))
105
  plt.plot(prediction, label="Prediction")
106
+ plt.plot(hist['Close'].to_list()[-10:], label="Previous")
107
  plt.ylabel('Price US$', fontsize = 15 )
108
  plt.xlabel('Working Days', fontsize = 15 )
109
  plt.title("NASDAQ Stock Prediction", fontsize = 20)
110
  plt.legend()
111
  plt.grid()
112
 
113
+ st.pyplot(plt)
114
+
115
+
116
+
117
+
118
+ st.write("""
119
+ # Historical prices data
120
+ Shown is the historical data of the prices (can be adapted with the values from the sidebar)
121
+ """)
122
+
123
+ temp_df
124
+