Spaces:
Runtime error
Runtime error
Commit
·
c1bdfd2
1
Parent(s):
178a799
Update app.py
Browse files
app.py
CHANGED
@@ -28,13 +28,11 @@ Shown is the stock prediction of the next working day taking into account the la
|
|
28 |
model = keras.models.load_model('model_stock_prices.h5')
|
29 |
|
30 |
working_days = st.sidebar.slider("Working days to take into account in the prediction", min_value = 10, max_value=30)
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
# downloading the last 10 days to make the prediction
|
35 |
|
36 |
today = date.today()
|
37 |
-
days_ago = today - timedelta(days=
|
38 |
|
39 |
# we get the last 20 days and keep just the last 10 working days, which have prices
|
40 |
nasdaq = yf.Ticker("^IXIC")
|
@@ -42,7 +40,7 @@ hist = nasdaq.history(start=days_ago, end=today)
|
|
42 |
hist = hist.drop(columns=['Dividends', 'Stock Splits'])
|
43 |
|
44 |
# keeping the last 10 data points
|
45 |
-
hist = hist[-
|
46 |
|
47 |
|
48 |
inflation = []
|
@@ -77,7 +75,7 @@ inp = scaler.transform(hist.to_numpy())
|
|
77 |
df = inp
|
78 |
temp_df = pd.DataFrame(inp, columns = ['Open','High','Low','Close','Volume','Inflation', 'CPI', 'Quarter_end'])
|
79 |
ds = []
|
80 |
-
ds.append(temp_df[0:
|
81 |
ds = np.array(ds)
|
82 |
|
83 |
|
@@ -105,7 +103,7 @@ prediction.append(final_prediction)
|
|
105 |
print(prediction)
|
106 |
plt.figure(figsize = (20,10))
|
107 |
plt.plot(prediction, label="Prediction")
|
108 |
-
plt.plot(hist['Close'].to_list()[-
|
109 |
plt.ylabel('Price US$', fontsize = 15 )
|
110 |
plt.xlabel('Working Days', fontsize = 15 )
|
111 |
plt.title("NASDAQ Stock Prediction", fontsize = 20)
|
|
|
28 |
model = keras.models.load_model('model_stock_prices.h5')
|
29 |
|
30 |
working_days = st.sidebar.slider("Working days to take into account in the prediction", min_value = 10, max_value=30)
|
31 |
+
working_days = int(working_days)
|
|
|
|
|
32 |
# downloading the last 10 days to make the prediction
|
33 |
|
34 |
today = date.today()
|
35 |
+
days_ago = today - timedelta(days=30)
|
36 |
|
37 |
# we get the last 20 days and keep just the last 10 working days, which have prices
|
38 |
nasdaq = yf.Ticker("^IXIC")
|
|
|
40 |
hist = hist.drop(columns=['Dividends', 'Stock Splits'])
|
41 |
|
42 |
# keeping the last 10 data points
|
43 |
+
hist = hist[-working_days:]
|
44 |
|
45 |
|
46 |
inflation = []
|
|
|
75 |
df = inp
|
76 |
temp_df = pd.DataFrame(inp, columns = ['Open','High','Low','Close','Volume','Inflation', 'CPI', 'Quarter_end'])
|
77 |
ds = []
|
78 |
+
ds.append(temp_df[0:working_days])
|
79 |
ds = np.array(ds)
|
80 |
|
81 |
|
|
|
103 |
print(prediction)
|
104 |
plt.figure(figsize = (20,10))
|
105 |
plt.plot(prediction, label="Prediction")
|
106 |
+
plt.plot(hist['Close'].to_list()[-working_days:], label="Previous")
|
107 |
plt.ylabel('Price US$', fontsize = 15 )
|
108 |
plt.xlabel('Working Days', fontsize = 15 )
|
109 |
plt.title("NASDAQ Stock Prediction", fontsize = 20)
|