Spaces:
Runtime error
Runtime error
import pandas as pd | |
import joblib | |
from huggingface_hub import HfApi | |
import pickle | |
import yfinance as yf | |
from datetime import datetime, timedelta | |
from forex_python.converter import get_rate | |
import pandas as pd | |
import numpy as np | |
import cpi | |
from sklearn.preprocessing import MinMaxScaler | |
from huggingface_hub import hf_hub_download | |
#cpi.update() | |
import gradio as gr | |
from huggingface_hub import notebook_login | |
notebook_login() | |
import hopsworks | |
# from huggingface_hub import hf_hub_download | |
# m = hf_hub_download(repo_id="marvmk/model-test", filename="model.pkl") | |
project = hopsworks.login(api_key_value="4CY1rwa8iz8Yu6gG.TwayrYmsX4GQfhSp3LNKYTLvyFMfqAvnzNUQp5ae9K5HhfYxb5mcnLAutm1K18zV") | |
fs = project.get_feature_store() | |
mr = project.get_model_registry() | |
model = mr.get_model("stock_price_modal") | |
#model_dir = model.download() | |
#model = joblib.load(model_dir + "/stock_price_model.pkl") | |
#from huggingface_hub import hf_hub_download | |
#m = hf_hub_download(repo_id="marvmk/model-test", filename="model.pkl") | |
#model = pickle.load(open(m, 'rb')) | |
#m=model_dir + "stock_model.pkl" | |
#with open(m, "rb") as f: | |
# model = pickle.load(f) | |
#model = pickle.load(open(m, 'rb')) | |
# downloading the last 10 days to make the prediction | |
from datetime import date | |
today = date.today() | |
days_ago = today - timedelta(days=20) | |
# we get the last 20 days and keep just the last 10 working days, which have prices | |
nasdaq = yf.Ticker("^IXIC") | |
hist = nasdaq.history(start=days_ago, end=today) | |
hist = hist.drop(columns=['Dividends', 'Stock Splits']) | |
# keeping the last 10 data points | |
hist = hist[-10:] | |
inflation = [] | |
for t in hist.index: | |
inflation.append(get_rate("USD", "EUR", t)) | |
cpi_items_df = cpi.series.get(seasonally_adjusted=False).to_dataframe() | |
cpi_items_df = cpi_items_df[cpi_items_df['period_type']=='monthly'] | |
cpi_items_df['date'] = pd.to_datetime(cpi_items_df['date']) | |
cpi_items_df = cpi_items_df.set_index('date') | |
cpi_df = cpi_items_df['value'].loc['2022':'2023'] | |
cpi_col = [] | |
for x in hist.index: | |
# ts = datetime(x.year, x.month, 1) | |
# just adding the latest inflation rate | |
cpi_col.append(cpi_df[-1]) | |
hist['Inflation'] = inflation | |
hist['CPI'] = cpi_col | |
hist['Quarter_end'] = np.where(hist.index.month%3==0,1,0) | |
# def build_sequences(nump, target_labels=['Close'], window=10, stride=1, telescope=1): | |
# # Sanity check to avoid runtime errors | |
# df = pd.DataFrame(nump, columns = ['Open','High','Low','Close','Volume','Inflation', 'CPI', 'Quarter_end']) | |
# assert window % stride == 0 | |
# dataset = [] | |
# labels = [] | |
# temp_df = df.copy().values | |
# temp_label = df[target_labels].copy().values | |
# padding_len = len(df)%window | |
# if(padding_len != 0): | |
# # Compute padding length | |
# padding_len = window - len(df)%window | |
# padding = np.zeros((padding_len,temp_df.shape[1]), dtype='float64') | |
# temp_df = np.concatenate((padding,df)) | |
# padding = np.zeros((padding_len,temp_label.shape[1]), dtype='float64') | |
# temp_label = np.concatenate((padding,temp_label)) | |
# assert len(temp_df) % window == 0 | |
# for idx in np.arange(0,len(temp_df)-window-telescope,stride): | |
# dataset.append(temp_df[idx:idx+window]) | |
# labels.append(temp_label[idx+window:idx+window+telescope]) | |
# dataset = np.array(dataset) | |
# labels = np.array(labels) | |
# return dataset, labels | |
s = hf_hub_download(repo_id="marvmk/scalable_project", filename="scaler.save", repo_type='dataset') | |
scaler = joblib.load(s) | |
inp = scaler.transform(hist.to_numpy()) | |
#inp = scaler.inverse_transform(inp) | |
df = inp | |
temp_df = pd.DataFrame(inp, columns = ['Open','High','Low','Close','Volume','Inflation', 'CPI', 'Quarter_end']) | |
ds = [] | |
ds.append(temp_df[0:10]) | |
ds = np.array(ds) | |
predictions = model.predict(ds) | |
predictions | |
p = predictions[0][0] | |
print(p) | |
a = np.array([0,0,0,p,0,0,0,0]) | |
a = scaler.inverse_transform(a.reshape(1,-1)) | |
final_prediction = a[-1][3] | |
import matplotlib.pyplot as plt | |
import streamlit as st | |
prediction = [] | |
#prediction.append(final_prediction) | |
close = hist['Close'].to_list() | |
print(close) | |
for c in close: | |
prediction.append(c) | |
prediction.append(final_prediction) | |
print(prediction) | |
plt.figure(figsize = (20,10)) | |
plt.plot(prediction, label="Prediction") | |
plt.plot(hist['Close'].to_list()[-10:], label="Previous") | |
plt.ylabel('Price US$', fontsize = 15 ) | |
plt.xlabel('Working Days', fontsize = 15 ) | |
plt.title("NASDAQ Stock Prediction", fontsize = 20) | |
plt.legend() | |
plt.grid() | |
st.pyplot(plt) |