Victorlopo21 commited on
Commit
5bfe1bf
·
1 Parent(s): fa62271

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -10
app.py CHANGED
@@ -9,6 +9,7 @@ import pandas as pd
9
  import numpy as np
10
  import cpi
11
  from sklearn.preprocessing import MinMaxScaler
 
12
 
13
  #cpi.update()
14
 
@@ -34,11 +35,11 @@ model = mr.get_model("stock_price_modal")
34
  #m = hf_hub_download(repo_id="marvmk/model-test", filename="model.pkl")
35
  #model = pickle.load(open(m, 'rb'))
36
 
37
- '''
38
- m=model_dir + "stock_model.pkl"
39
- with open(m, "rb") as f:
40
- model = pickle.load(f)
41
- '''
42
 
43
 
44
 
@@ -80,7 +81,7 @@ for x in hist.index:
80
  hist['Inflation'] = inflation
81
  hist['CPI'] = cpi_col
82
 
83
- hist
84
 
85
  hist['Quarter_end'] = np.where(hist.index.month%3==0,1,0)
86
 
@@ -111,7 +112,7 @@ hist['Quarter_end'] = np.where(hist.index.month%3==0,1,0)
111
  # labels = np.array(labels)
112
  # return dataset, labels
113
 
114
- hist
115
 
116
  s = hf_hub_download(repo_id="marvmk/scalable_project", filename="scaler.save", repo_type='dataset')
117
  scaler = joblib.load(s)
@@ -125,7 +126,7 @@ ds = []
125
  ds.append(temp_df[0:10])
126
  ds = np.array(ds)
127
 
128
- ds
129
 
130
  predictions = model.predict(ds)
131
  predictions
@@ -134,11 +135,11 @@ print(p)
134
  a = np.array([0,0,0,p,0,0,0,0])
135
 
136
  a = scaler.inverse_transform(a.reshape(1,-1))
137
- a
138
 
139
  final_prediction = a[-1][3]
140
 
141
- final_prediction
142
 
143
  import matplotlib.pyplot as plt
144
  import streamlit as st
 
9
  import numpy as np
10
  import cpi
11
  from sklearn.preprocessing import MinMaxScaler
12
+ from huggingface_hub import hf_hub_download
13
 
14
  #cpi.update()
15
 
 
35
  #m = hf_hub_download(repo_id="marvmk/model-test", filename="model.pkl")
36
  #model = pickle.load(open(m, 'rb'))
37
 
38
+
39
+ #m=model_dir + "stock_model.pkl"
40
+ #with open(m, "rb") as f:
41
+ # model = pickle.load(f)
42
+
43
 
44
 
45
 
 
81
  hist['Inflation'] = inflation
82
  hist['CPI'] = cpi_col
83
 
84
+
85
 
86
  hist['Quarter_end'] = np.where(hist.index.month%3==0,1,0)
87
 
 
112
  # labels = np.array(labels)
113
  # return dataset, labels
114
 
115
+
116
 
117
  s = hf_hub_download(repo_id="marvmk/scalable_project", filename="scaler.save", repo_type='dataset')
118
  scaler = joblib.load(s)
 
126
  ds.append(temp_df[0:10])
127
  ds = np.array(ds)
128
 
129
+
130
 
131
  predictions = model.predict(ds)
132
  predictions
 
135
  a = np.array([0,0,0,p,0,0,0,0])
136
 
137
  a = scaler.inverse_transform(a.reshape(1,-1))
138
+
139
 
140
  final_prediction = a[-1][3]
141
 
142
+
143
 
144
  import matplotlib.pyplot as plt
145
  import streamlit as st