Syluh27
commited on
Commit
·
122e667
1
Parent(s):
03e0d76
- model.py +42 -33
- requirements.txt +2 -1
model.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from langchain.chains import RetrievalQA
|
2 |
from langchain.vectorstores import Chroma
|
3 |
from langchain.embeddings import HuggingFaceEmbeddings
|
@@ -7,70 +8,78 @@ from huggingface_hub import hf_hub_download
|
|
7 |
import os
|
8 |
import shutil
|
9 |
|
10 |
-
# Configuración esencial
|
11 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
12 |
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
|
|
|
13 |
|
14 |
-
# 1. Configurar rutas específicas para Spaces
|
15 |
-
CHROMA_DIR = "/home/user/app/chroma_db" # Ruta dentro del espacio persistente
|
16 |
-
os.makedirs(CHROMA_DIR, exist_ok=True)
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
# 2. Limpieza inicial de conflictos
|
20 |
-
def clean_space():
|
21 |
-
paths_to_clean = [
|
22 |
-
"/home/user/.cache/huggingface/hub/datasets--VictorCarr02--Conversational-Agent-LawsEC",
|
23 |
-
CHROMA_DIR
|
24 |
-
]
|
25 |
|
26 |
-
|
27 |
-
if os.path.exists(path):
|
28 |
-
shutil.rmtree(path, ignore_errors=True)
|
29 |
-
os.makedirs(CHROMA_DIR, exist_ok=True)
|
30 |
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
filename="chroma.sqlite3",
|
39 |
-
token=HF_TOKEN,
|
40 |
-
force_download=True
|
41 |
-
)
|
42 |
|
43 |
-
# Mover al directorio controlado
|
44 |
-
shutil.move(chroma_source, os.path.join(CHROMA_DIR, "chroma.sqlite3"))
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
#
|
51 |
embeddings = HuggingFaceEmbeddings(
|
52 |
model_name="sentence-transformers/all-mpnet-base-v2",
|
53 |
model_kwargs={"device": "cpu"}
|
54 |
)
|
55 |
|
56 |
-
#
|
57 |
vector_store = Chroma(
|
58 |
client=chroma_client,
|
59 |
collection_name="legal_docs",
|
60 |
embedding_function=embeddings
|
61 |
)
|
62 |
|
63 |
-
#
|
64 |
llm = ChatMistralAI(
|
65 |
api_key=MISTRAL_API_KEY,
|
66 |
model="mistral-large-latest",
|
67 |
temperature=0.1
|
68 |
)
|
69 |
|
70 |
-
#
|
71 |
rag_chain = RetrievalQA.from_chain_type(
|
72 |
llm=llm,
|
73 |
-
retriever=vector_store.as_retriever(search_kwargs={"k":
|
74 |
chain_type="stuff",
|
75 |
return_source_documents=True
|
76 |
)
|
|
|
1 |
+
# model.py actualizado
|
2 |
from langchain.chains import RetrievalQA
|
3 |
from langchain.vectorstores import Chroma
|
4 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
8 |
import os
|
9 |
import shutil
|
10 |
|
11 |
+
# 1. Configuración esencial
|
12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
13 |
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
|
14 |
+
CHROMA_DIR = "/home/user/app/chroma_db"
|
15 |
|
|
|
|
|
|
|
16 |
|
17 |
+
# 2. Limpieza inicial radical
|
18 |
+
def full_clean():
|
19 |
+
# Eliminar todo rastro previo
|
20 |
+
shutil.rmtree(CHROMA_DIR, ignore_errors=True)
|
21 |
+
shutil.rmtree("/home/user/.cache/huggingface/hub", ignore_errors=True)
|
22 |
+
os.makedirs(CHROMA_DIR, exist_ok=True)
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
full_clean()
|
|
|
|
|
|
|
26 |
|
27 |
|
28 |
+
# 3. Descargar y configurar ChromaDB
|
29 |
+
def setup_chroma():
|
30 |
+
# Descargar archivo original
|
31 |
+
chroma_src = hf_hub_download(
|
32 |
+
repo_id="VictorCarr02/Conversational-Agent-LawsEC",
|
33 |
+
repo_type="dataset",
|
34 |
+
filename="chroma.sqlite3",
|
35 |
+
token=HF_TOKEN
|
36 |
+
)
|
37 |
|
38 |
+
# Configurar estructura requerida por Chroma
|
39 |
+
tenant_dir = os.path.join(CHROMA_DIR, "chroma.sqlite3")
|
40 |
+
os.makedirs(os.path.dirname(tenant_dir), exist_ok=True)
|
41 |
+
shutil.copy(chroma_src, tenant_dir)
|
|
|
|
|
|
|
|
|
42 |
|
|
|
|
|
43 |
|
44 |
+
setup_chroma()
|
45 |
+
|
46 |
+
# 4. Conexión explícita a ChromaDB
|
47 |
+
chroma_client = chromadb.PersistentClient(
|
48 |
+
path=CHROMA_DIR,
|
49 |
+
tenant="default_tenant",
|
50 |
+
database="default_database"
|
51 |
+
)
|
52 |
+
|
53 |
+
# 5. Verificar/crear collection
|
54 |
+
try:
|
55 |
+
collection = chroma_client.get_collection("legal_docs")
|
56 |
+
except ValueError:
|
57 |
+
collection = chroma_client.create_collection("legal_docs")
|
58 |
|
59 |
+
# 6. Configurar embeddings
|
60 |
embeddings = HuggingFaceEmbeddings(
|
61 |
model_name="sentence-transformers/all-mpnet-base-v2",
|
62 |
model_kwargs={"device": "cpu"}
|
63 |
)
|
64 |
|
65 |
+
# 7. Inicializar Chroma LangChain
|
66 |
vector_store = Chroma(
|
67 |
client=chroma_client,
|
68 |
collection_name="legal_docs",
|
69 |
embedding_function=embeddings
|
70 |
)
|
71 |
|
72 |
+
# 8. Configurar Mistral
|
73 |
llm = ChatMistralAI(
|
74 |
api_key=MISTRAL_API_KEY,
|
75 |
model="mistral-large-latest",
|
76 |
temperature=0.1
|
77 |
)
|
78 |
|
79 |
+
# 9. Cadena RAG final
|
80 |
rag_chain = RetrievalQA.from_chain_type(
|
81 |
llm=llm,
|
82 |
+
retriever=vector_store.as_retriever(search_kwargs={"k": 3}),
|
83 |
chain_type="stuff",
|
84 |
return_source_documents=True
|
85 |
)
|
requirements.txt
CHANGED
@@ -3,4 +3,5 @@ langchain
|
|
3 |
chromadb
|
4 |
huggingface_hub
|
5 |
langchain_mistralai
|
6 |
-
langchain-community
|
|
|
|
3 |
chromadb
|
4 |
huggingface_hub
|
5 |
langchain_mistralai
|
6 |
+
langchain-community
|
7 |
+
sentence-transformers
|