Syluh27
commited on
Commit
·
03e0d76
1
Parent(s):
897e091
model.py
CHANGED
@@ -7,37 +7,32 @@ from huggingface_hub import hf_hub_download
|
|
7 |
import os
|
8 |
import shutil
|
9 |
|
10 |
-
# Configuración
|
11 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
12 |
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
|
18 |
-
# Rutas críticas
|
19 |
-
CHROMA_DIR = "/home/user/app/chroma_db" # Directorio exclusivo para Chroma
|
20 |
-
CACHE_PATH = "/home/user/.cache/huggingface/hub/datasets--VictorCarr02--Conversational-Agent-LawsEC"
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
if os.path.exists(CACHE_PATH):
|
27 |
-
shutil.rmtree(CACHE_PATH, ignore_errors=True)
|
28 |
-
|
29 |
-
# Eliminar directorio Chroma existente
|
30 |
-
if os.path.exists(CHROMA_DIR):
|
31 |
-
shutil.rmtree(CHROMA_DIR, ignore_errors=True)
|
32 |
-
|
33 |
-
# Crear directorio Chroma vacío
|
34 |
os.makedirs(CHROMA_DIR, exist_ok=True)
|
35 |
|
36 |
|
37 |
-
|
38 |
|
39 |
-
# Descargar
|
40 |
-
|
41 |
repo_id="VictorCarr02/Conversational-Agent-LawsEC",
|
42 |
repo_type="dataset",
|
43 |
filename="chroma.sqlite3",
|
@@ -45,36 +40,37 @@ chroma_sqlite_path = hf_hub_download(
|
|
45 |
force_download=True
|
46 |
)
|
47 |
|
48 |
-
# Mover
|
49 |
-
|
50 |
|
51 |
-
#
|
52 |
chroma_client = chromadb.PersistentClient(path=CHROMA_DIR)
|
|
|
53 |
|
54 |
-
#
|
55 |
embeddings = HuggingFaceEmbeddings(
|
56 |
model_name="sentence-transformers/all-mpnet-base-v2",
|
57 |
model_kwargs={"device": "cpu"}
|
58 |
)
|
59 |
|
60 |
-
#
|
61 |
vector_store = Chroma(
|
62 |
client=chroma_client,
|
63 |
collection_name="legal_docs",
|
64 |
embedding_function=embeddings
|
65 |
)
|
66 |
|
67 |
-
# Configurar
|
68 |
llm = ChatMistralAI(
|
69 |
api_key=MISTRAL_API_KEY,
|
70 |
model="mistral-large-latest",
|
71 |
temperature=0.1
|
72 |
)
|
73 |
|
74 |
-
#
|
75 |
rag_chain = RetrievalQA.from_chain_type(
|
76 |
llm=llm,
|
77 |
-
retriever=vector_store.as_retriever(search_kwargs={"k":
|
78 |
chain_type="stuff",
|
79 |
return_source_documents=True
|
80 |
)
|
|
|
7 |
import os
|
8 |
import shutil
|
9 |
|
10 |
+
# Configuración esencial para Spaces
|
11 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
12 |
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
|
13 |
|
14 |
+
# 1. Configurar rutas específicas para Spaces
|
15 |
+
CHROMA_DIR = "/home/user/app/chroma_db" # Ruta dentro del espacio persistente
|
16 |
+
os.makedirs(CHROMA_DIR, exist_ok=True)
|
17 |
|
|
|
|
|
|
|
18 |
|
19 |
+
# 2. Limpieza inicial de conflictos
|
20 |
+
def clean_space():
|
21 |
+
paths_to_clean = [
|
22 |
+
"/home/user/.cache/huggingface/hub/datasets--VictorCarr02--Conversational-Agent-LawsEC",
|
23 |
+
CHROMA_DIR
|
24 |
+
]
|
25 |
|
26 |
+
for path in paths_to_clean:
|
27 |
+
if os.path.exists(path):
|
28 |
+
shutil.rmtree(path, ignore_errors=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
os.makedirs(CHROMA_DIR, exist_ok=True)
|
30 |
|
31 |
|
32 |
+
clean_space()
|
33 |
|
34 |
+
# 3. Descargar y mover chroma.sqlite3
|
35 |
+
chroma_source = hf_hub_download(
|
36 |
repo_id="VictorCarr02/Conversational-Agent-LawsEC",
|
37 |
repo_type="dataset",
|
38 |
filename="chroma.sqlite3",
|
|
|
40 |
force_download=True
|
41 |
)
|
42 |
|
43 |
+
# Mover al directorio controlado
|
44 |
+
shutil.move(chroma_source, os.path.join(CHROMA_DIR, "chroma.sqlite3"))
|
45 |
|
46 |
+
# 4. Inicializar ChromaDB
|
47 |
chroma_client = chromadb.PersistentClient(path=CHROMA_DIR)
|
48 |
+
collection = chroma_client.get_or_create_collection("legal_docs")
|
49 |
|
50 |
+
# 5. Configurar embeddings (optimizado para Spaces)
|
51 |
embeddings = HuggingFaceEmbeddings(
|
52 |
model_name="sentence-transformers/all-mpnet-base-v2",
|
53 |
model_kwargs={"device": "cpu"}
|
54 |
)
|
55 |
|
56 |
+
# 6. Crear vector store
|
57 |
vector_store = Chroma(
|
58 |
client=chroma_client,
|
59 |
collection_name="legal_docs",
|
60 |
embedding_function=embeddings
|
61 |
)
|
62 |
|
63 |
+
# 7. Configurar Mistral
|
64 |
llm = ChatMistralAI(
|
65 |
api_key=MISTRAL_API_KEY,
|
66 |
model="mistral-large-latest",
|
67 |
temperature=0.1
|
68 |
)
|
69 |
|
70 |
+
# 8. Cadena RAG final
|
71 |
rag_chain = RetrievalQA.from_chain_type(
|
72 |
llm=llm,
|
73 |
+
retriever=vector_store.as_retriever(search_kwargs={"k": 2}),
|
74 |
chain_type="stuff",
|
75 |
return_source_documents=True
|
76 |
)
|