ChatBotOpenAi / app.py
VicGerardoPR's picture
Update app.py
26e8e2a verified
import streamlit as st
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
pipeline,
BitsAndBytesConfig
)
import torch
# 1. Configuraci贸n del Modelo
@st.cache_resource
def load_model():
try:
# Configuraci贸n correcta para M1/M2
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16, # Usar bfloat16 para MPS
bnb_4bit_use_double_quant=True
)
model = AutoModelForCausalLM.from_pretrained(
"HuggingFaceH4/zephyr-7b-beta",
device_map="mps", # Forzar uso de Metal
quantization_config=quantization_config,
torch_dtype=torch.bfloat16, # Tipo de dato compatible
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
"microsoft/Phi-3-mini-4k-instruct"
)
return model, tokenizer
except Exception as e:
st.error(f"Error cargando el modelo: {str(e)}")
return None, None
# 2. Interfaz de Streamlit
st.title("馃 Chatbot Optimizado para M1")
st.markdown("Usando Microsoft Phi-3-mini - [Hugging Face](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)")
# 3. Inicializaci贸n de Sesi贸n
if "messages" not in st.session_state:
st.session_state.messages = [
{"role": "assistant", "content": "隆Hola! Soy tu asistente AI. 驴En qu茅 puedo ayudarte?"}
]
# 4. Carga del Modelo
model, tokenizer = load_model()
# 5. Funci贸n de Generaci贸n
def generate_response(prompt):
try:
messages = [
{"role": "user", "content": prompt}
]
inputs = tokenizer.apply_chat_template(
messages,
return_tensors="pt"
).to(model.device)
outputs = model.generate(
inputs,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
return tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
except Exception as e:
return f"Error generando respuesta: {str(e)}"
# 6. Interacci贸n del Usuario
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("Escribe tu mensaje..."):
# Mostrar input del usuario
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Generar respuesta
with st.chat_message("assistant"):
with st.spinner("Pensando..."):
response = generate_response(prompt)
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})