import streamlit as st
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    pipeline,
    BitsAndBytesConfig
)
import torch

# 1. Configuraci贸n del Modelo
@st.cache_resource
def load_model():
    try:
        # Configuraci贸n correcta para M1/M2
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.bfloat16,  # Usar bfloat16 para MPS
            bnb_4bit_use_double_quant=True
        )
        
        model = AutoModelForCausalLM.from_pretrained(
            "HuggingFaceH4/zephyr-7b-beta",
            device_map="mps",  # Forzar uso de Metal
            quantization_config=quantization_config,
            torch_dtype=torch.bfloat16,  # Tipo de dato compatible
            trust_remote_code=True
        )
        
        tokenizer = AutoTokenizer.from_pretrained(
            "microsoft/Phi-3-mini-4k-instruct"
        )
        
        return model, tokenizer
    
    except Exception as e:
        st.error(f"Error cargando el modelo: {str(e)}")
        return None, None

# 2. Interfaz de Streamlit
st.title("馃 Chatbot Optimizado para M1")
st.markdown("Usando Microsoft Phi-3-mini - [Hugging Face](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)")

# 3. Inicializaci贸n de Sesi贸n
if "messages" not in st.session_state:
    st.session_state.messages = [
        {"role": "assistant", "content": "隆Hola! Soy tu asistente AI. 驴En qu茅 puedo ayudarte?"}
    ]

# 4. Carga del Modelo
model, tokenizer = load_model()

# 5. Funci贸n de Generaci贸n
def generate_response(prompt):
    try:
        messages = [
            {"role": "user", "content": prompt}
        ]
        
        inputs = tokenizer.apply_chat_template(
            messages,
            return_tensors="pt"
        ).to(model.device)
        
        outputs = model.generate(
            inputs,
            max_new_tokens=512,
            temperature=0.7,
            top_p=0.9,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id
        )
        
        return tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
    
    except Exception as e:
        return f"Error generando respuesta: {str(e)}"

# 6. Interacci贸n del Usuario
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

if prompt := st.chat_input("Escribe tu mensaje..."):
    # Mostrar input del usuario
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.markdown(prompt)
    
    # Generar respuesta
    with st.chat_message("assistant"):
        with st.spinner("Pensando..."):
            response = generate_response(prompt)
            st.markdown(response)
    
    st.session_state.messages.append({"role": "assistant", "content": response})