Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
import os
|
8 |
+
from threading import Event
|
9 |
+
import traceback
|
10 |
+
import cv2 # Added for bilateral filtering
|
11 |
+
|
12 |
+
# Constants
|
13 |
+
IMG_SIZE = 128
|
14 |
+
TIMESTEPS = 300 # From second code
|
15 |
+
NUM_CLASSES = 2
|
16 |
+
|
17 |
+
# Global Cancellation Flag
|
18 |
+
cancel_event = Event()
|
19 |
+
|
20 |
+
# Device Configuration
|
21 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
+
|
23 |
+
# --- Model Definitions ---
|
24 |
+
class SinusoidalPositionEmbeddings(nn.Module):
|
25 |
+
def __init__(self, dim):
|
26 |
+
super().__init__()
|
27 |
+
self.dim = dim
|
28 |
+
half_dim = dim // 2
|
29 |
+
emb = math.log(10000) / (half_dim - 1)
|
30 |
+
emb = torch.exp(torch.arange(half_dim) * -emb) # From second code (no dtype specified)
|
31 |
+
self.register_buffer('embeddings', emb)
|
32 |
+
|
33 |
+
def forward(self, time):
|
34 |
+
device = time.device # From second code
|
35 |
+
embeddings = self.embeddings.to(device)
|
36 |
+
embeddings = time[:, None] * embeddings[None, :] # From second code
|
37 |
+
return torch.cat([embeddings.sin(), embeddings.cos()], dim=-1)
|
38 |
+
|
39 |
+
class UNet(nn.Module):
|
40 |
+
def __init__(self, in_channels=3, out_channels=3, num_classes=2, time_dim=256):
|
41 |
+
super().__init__()
|
42 |
+
self.num_classes = num_classes
|
43 |
+
self.label_embedding = nn.Embedding(num_classes, time_dim)
|
44 |
+
|
45 |
+
self.time_mlp = nn.Sequential(
|
46 |
+
SinusoidalPositionEmbeddings(time_dim),
|
47 |
+
nn.Linear(time_dim, time_dim),
|
48 |
+
nn.ReLU(),
|
49 |
+
nn.Linear(time_dim, time_dim)
|
50 |
+
)
|
51 |
+
|
52 |
+
# Encoder
|
53 |
+
self.inc = self.double_conv(in_channels, 64)
|
54 |
+
self.down1 = self.down(64 + time_dim * 2, 128)
|
55 |
+
self.down2 = self.down(128 + time_dim * 2, 256)
|
56 |
+
self.down3 = self.down(256 + time_dim * 2, 512)
|
57 |
+
|
58 |
+
# Bottleneck
|
59 |
+
self.bottleneck = self.double_conv(512 + time_dim * 2, 1024)
|
60 |
+
|
61 |
+
# Decoder
|
62 |
+
self.up1 = nn.ConvTranspose2d(1024, 256, kernel_size=2, stride=2)
|
63 |
+
self.upconv1 = self.double_conv(256 + 256 + time_dim * 2, 256)
|
64 |
+
|
65 |
+
self.up2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
|
66 |
+
self.upconv2 = self.double_conv(128 + 128 + time_dim * 2, 128)
|
67 |
+
|
68 |
+
self.up3 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
|
69 |
+
self.upconv3 = self.double_conv(64 + 64 + time_dim * 2, 64)
|
70 |
+
|
71 |
+
self.outc = nn.Conv2d(64, out_channels, kernel_size=1)
|
72 |
+
|
73 |
+
def double_conv(self, in_channels, out_channels):
|
74 |
+
return nn.Sequential(
|
75 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
|
76 |
+
nn.ReLU(inplace=True),
|
77 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
|
78 |
+
nn.ReLU(inplace=True)
|
79 |
+
)
|
80 |
+
|
81 |
+
def down(self, in_channels, out_channels):
|
82 |
+
return nn.Sequential(
|
83 |
+
nn.MaxPool2d(2),
|
84 |
+
self.double_conv(in_channels, out_channels)
|
85 |
+
)
|
86 |
+
|
87 |
+
def forward(self, x, labels, time):
|
88 |
+
label_indices = torch.argmax(labels, dim=1)
|
89 |
+
label_emb = self.label_embedding(label_indices)
|
90 |
+
t_emb = self.time_mlp(time)
|
91 |
+
|
92 |
+
combined_emb = torch.cat([t_emb, label_emb], dim=1)
|
93 |
+
combined_emb = combined_emb.unsqueeze(-1).unsqueeze(-1)
|
94 |
+
|
95 |
+
x1 = self.inc(x)
|
96 |
+
x1_cat = torch.cat([x1, combined_emb.repeat(1, 1, x1.shape[-2], x1.shape[-1])], dim=1)
|
97 |
+
|
98 |
+
x2 = self.down1(x1_cat)
|
99 |
+
x2_cat = torch.cat([x2, combined_emb.repeat(1, 1, x2.shape[-2], x2.shape[-1])], dim=1)
|
100 |
+
|
101 |
+
x3 = self.down2(x2_cat)
|
102 |
+
x3_cat = torch.cat([x3, combined_emb.repeat(1, 1, x3.shape[-2], x3.shape[-1])], dim=1)
|
103 |
+
|
104 |
+
x4 = self.down3(x3_cat)
|
105 |
+
x4_cat = torch.cat([x4, combined_emb.repeat(1, 1, x4.shape[-2], x4.shape[-1])], dim=1)
|
106 |
+
|
107 |
+
x5 = self.bottleneck(x4_cat)
|
108 |
+
|
109 |
+
x = self.up1(x5)
|
110 |
+
x = torch.cat([x, x3], dim=1)
|
111 |
+
x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
|
112 |
+
x = self.upconv1(x)
|
113 |
+
|
114 |
+
x = self.up2(x)
|
115 |
+
x = torch.cat([x, x2], dim=1)
|
116 |
+
x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
|
117 |
+
x = self.upconv2(x)
|
118 |
+
|
119 |
+
x = self.up3(x)
|
120 |
+
x = torch.cat([x, x1], dim=1)
|
121 |
+
x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
|
122 |
+
x = self.upconv3(x)
|
123 |
+
|
124 |
+
return self.outc(x)
|
125 |
+
|
126 |
+
class DiffusionModel(nn.Module):
|
127 |
+
def __init__(self, model, timesteps=TIMESTEPS, time_dim=256):
|
128 |
+
super().__init__()
|
129 |
+
self.model = model
|
130 |
+
self.timesteps = timesteps
|
131 |
+
self.time_dim = time_dim
|
132 |
+
|
133 |
+
# Linear beta schedule with scaling from second code
|
134 |
+
scale = 1000 / timesteps
|
135 |
+
beta_start = scale * 0.0001
|
136 |
+
beta_end = scale * 0.02
|
137 |
+
self.betas = torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float64)
|
138 |
+
self.alphas = 1. - self.betas
|
139 |
+
self.register_buffer('alpha_bars', torch.cumprod(self.alphas, dim=0).float())
|
140 |
+
|
141 |
+
def forward_diffusion(self, x_0, t, noise):
|
142 |
+
x_0 = x_0.float()
|
143 |
+
noise = noise.float()
|
144 |
+
alpha_bar_t = self.alpha_bars[t].view(-1, 1, 1, 1)
|
145 |
+
x_t = torch.sqrt(alpha_bar_t) * x_0 + torch.sqrt(1. - alpha_bar_t) * noise
|
146 |
+
return x_t
|
147 |
+
|
148 |
+
def forward(self, x_0, labels):
|
149 |
+
t = torch.randint(0, self.timesteps, (x_0.shape[0],), device=x_0.device).long()
|
150 |
+
noise = torch.randn_like(x_0)
|
151 |
+
x_t = self.forward_diffusion(x_0, t, noise)
|
152 |
+
predicted_noise = self.model(x_t, labels, t.float())
|
153 |
+
return predicted_noise, noise, t
|
154 |
+
|
155 |
+
@torch.no_grad()
|
156 |
+
def sample(self, num_images, img_size, num_classes, labels, device, progress_callback=None):
|
157 |
+
# Start with random noise
|
158 |
+
x_t = torch.randn(num_images, 3, img_size, img_size).to(device)
|
159 |
+
|
160 |
+
# Label handling (one-hot if needed)
|
161 |
+
if labels.ndim == 1:
|
162 |
+
labels_one_hot = torch.zeros(num_images, num_classes).to(device)
|
163 |
+
labels_one_hot[torch.arange(num_images), labels] = 1
|
164 |
+
labels = labels_one_hot
|
165 |
+
else:
|
166 |
+
labels = labels.to(device)
|
167 |
+
|
168 |
+
# REVERTED SAMPLING LOOP WITH NOISE REDUCTION
|
169 |
+
for t in reversed(range(self.timesteps)):
|
170 |
+
if cancel_event.is_set():
|
171 |
+
return None
|
172 |
+
|
173 |
+
t_tensor = torch.full((num_images,), t, device=device, dtype=torch.float)
|
174 |
+
predicted_noise = self.model(x_t, labels, t_tensor)
|
175 |
+
|
176 |
+
# Calculate coefficients
|
177 |
+
beta_t = self.betas[t].to(device)
|
178 |
+
alpha_t = self.alphas[t].to(device)
|
179 |
+
alpha_bar_t = self.alpha_bars[t].to(device)
|
180 |
+
|
181 |
+
mean = (1 / torch.sqrt(alpha_t)) * (x_t - (beta_t / torch.sqrt(1 - alpha_bar_t)) * predicted_noise)
|
182 |
+
variance = beta_t
|
183 |
+
|
184 |
+
# Reduced noise injection with lower multiplier
|
185 |
+
if t > 0:
|
186 |
+
noise = torch.randn_like(x_t) * 0.8 # Reduced noise by 20%
|
187 |
+
else:
|
188 |
+
noise = torch.zeros_like(x_t)
|
189 |
+
|
190 |
+
x_t = mean + torch.sqrt(variance) * noise
|
191 |
+
|
192 |
+
if progress_callback:
|
193 |
+
progress_callback((self.timesteps - t) / self.timesteps)
|
194 |
+
|
195 |
+
# Clamp and denormalize
|
196 |
+
x_0 = torch.clamp(x_t, -1., 1.)
|
197 |
+
mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
|
198 |
+
std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
|
199 |
+
x_0 = std * x_0 + mean
|
200 |
+
x_0 = torch.clamp(x_0, 0., 1.)
|
201 |
+
|
202 |
+
# ENHANCED SHARPENING
|
203 |
+
# First apply mild bilateral filtering to reduce noise while preserving edges
|
204 |
+
x_np = x_0.cpu().permute(0, 2, 3, 1).numpy()
|
205 |
+
filtered = []
|
206 |
+
for img in x_np:
|
207 |
+
img = (img * 255).astype(np.uint8)
|
208 |
+
filtered_img = cv2.bilateralFilter(img, d=5, sigmaColor=15, sigmaSpace=15)
|
209 |
+
filtered.append(filtered_img / 255.0)
|
210 |
+
x_0 = torch.tensor(np.array(filtered), device=device).permute(0, 3, 1, 2)
|
211 |
+
|
212 |
+
# Then apply stronger unsharp masking
|
213 |
+
kernel = torch.ones(3, 1, 5, 5, device=device) / 75
|
214 |
+
kernel = kernel.to(x_0.dtype)
|
215 |
+
blurred = torch.nn.functional.conv2d(
|
216 |
+
x_0,
|
217 |
+
kernel,
|
218 |
+
padding=2,
|
219 |
+
groups=3
|
220 |
+
)
|
221 |
+
x_0 = torch.clamp(1.5 * x_0 - 0.5 * blurred, 0., 1.) # Increased sharpening factor
|
222 |
+
|
223 |
+
return x_0
|
224 |
+
|
225 |
+
def load_model(model_path, device):
|
226 |
+
unet_model = UNet(num_classes=NUM_CLASSES).to(device)
|
227 |
+
diffusion_model = DiffusionModel(unet_model, timesteps=TIMESTEPS).to(device)
|
228 |
+
|
229 |
+
if os.path.exists(model_path):
|
230 |
+
checkpoint = torch.load(model_path, map_location=device)
|
231 |
+
|
232 |
+
if 'model_state_dict' in checkpoint:
|
233 |
+
# Handle training checkpoint format
|
234 |
+
state_dict = {
|
235 |
+
k[6:]: v for k, v in checkpoint['model_state_dict'].items()
|
236 |
+
if k.startswith('model.')
|
237 |
+
}
|
238 |
+
|
239 |
+
# Load UNet weights
|
240 |
+
unet_model.load_state_dict(state_dict, strict=False)
|
241 |
+
|
242 |
+
# Initialize diffusion model with loaded UNet
|
243 |
+
diffusion_model = DiffusionModel(unet_model, timesteps=TIMESTEPS).to(device)
|
244 |
+
|
245 |
+
print(f"Loaded UNet weights from {model_path}")
|
246 |
+
else:
|
247 |
+
# Handle direct model weights format
|
248 |
+
try:
|
249 |
+
# First try loading full DiffusionModel
|
250 |
+
diffusion_model.load_state_dict(checkpoint)
|
251 |
+
print(f"Loaded full DiffusionModel from {model_path}")
|
252 |
+
except RuntimeError:
|
253 |
+
# If that fails, load just the UNet weights
|
254 |
+
unet_model.load_state_dict(checkpoint, strict=False)
|
255 |
+
diffusion_model = DiffusionModel(unet_model, timesteps=TIMESTEPS).to(device)
|
256 |
+
print(f"Loaded UNet weights only from {model_path}")
|
257 |
+
else:
|
258 |
+
print(f"Weights file not found at {model_path}")
|
259 |
+
print("Using randomly initialized weights")
|
260 |
+
|
261 |
+
diffusion_model.eval()
|
262 |
+
return diffusion_model
|
263 |
+
|
264 |
+
def cancel_generation():
|
265 |
+
cancel_event.set()
|
266 |
+
return "Generation cancelled"
|
267 |
+
|
268 |
+
def generate_images(label_str, num_images, progress=gr.Progress()):
|
269 |
+
global loaded_model
|
270 |
+
cancel_event.clear()
|
271 |
+
|
272 |
+
if num_images < 1 or num_images > 10:
|
273 |
+
raise gr.Error("Number of images must be between 1 and 10")
|
274 |
+
|
275 |
+
label_map = {'Pneumonia': 0, 'Pneumothorax': 1}
|
276 |
+
if label_str not in label_map:
|
277 |
+
raise gr.Error("Invalid condition selected")
|
278 |
+
|
279 |
+
labels = torch.zeros(num_images, NUM_CLASSES)
|
280 |
+
labels[:, label_map[label_str]] = 1
|
281 |
+
|
282 |
+
try:
|
283 |
+
def progress_callback(progress_val):
|
284 |
+
progress(progress_val, desc="Generating...")
|
285 |
+
if cancel_event.is_set():
|
286 |
+
raise gr.Error("Generation was cancelled by user")
|
287 |
+
|
288 |
+
with torch.no_grad():
|
289 |
+
images = loaded_model.sample(
|
290 |
+
num_images=num_images,
|
291 |
+
img_size=IMG_SIZE,
|
292 |
+
num_classes=NUM_CLASSES,
|
293 |
+
labels=labels,
|
294 |
+
device=device,
|
295 |
+
progress_callback=progress_callback
|
296 |
+
)
|
297 |
+
|
298 |
+
if images is None:
|
299 |
+
return None, None
|
300 |
+
|
301 |
+
processed_images = []
|
302 |
+
for img in images:
|
303 |
+
img_np = img.cpu().permute(1, 2, 0).numpy()
|
304 |
+
img_np = (img_np * 255).clip(0, 255).astype(np.uint8)
|
305 |
+
pil_img = Image.fromarray(img_np)
|
306 |
+
processed_images.append(pil_img)
|
307 |
+
|
308 |
+
if num_images == 1:
|
309 |
+
return processed_images[0], processed_images
|
310 |
+
else:
|
311 |
+
return None, processed_images
|
312 |
+
|
313 |
+
except Exception as e:
|
314 |
+
traceback.print_exc()
|
315 |
+
raise gr.Error(f"Generation failed: {str(e)}")
|
316 |
+
finally:
|
317 |
+
torch.cuda.empty_cache()
|
318 |
+
|
319 |
+
# Load model
|
320 |
+
MODEL_NAME = "model_weights.pth"
|
321 |
+
model_path = MODEL_NAME
|
322 |
+
print("Loading model...")
|
323 |
+
try:
|
324 |
+
loaded_model = load_model(model_path, device)
|
325 |
+
print("Model loaded successfully!")
|
326 |
+
except Exception as e:
|
327 |
+
print(f"Failed to load model: {e}")
|
328 |
+
print("Creating dummy model for demonstration")
|
329 |
+
loaded_model = DiffusionModel(UNet(num_classes=NUM_CLASSES), timesteps=TIMESTEPS).to(device)
|
330 |
+
|
331 |
+
# Gradio UI (from first code)
|
332 |
+
with gr.Blocks(theme=gr.themes.Soft(
|
333 |
+
primary_hue="violet",
|
334 |
+
neutral_hue="slate",
|
335 |
+
font=[gr.themes.GoogleFont("Poppins")],
|
336 |
+
text_size="md"
|
337 |
+
)) as demo:
|
338 |
+
gr.Markdown("""
|
339 |
+
<center>
|
340 |
+
<h1>Synthetic X-ray Generator</h1>
|
341 |
+
<p><em>Generate synthetic chest X-rays conditioned on pathology</em></p>
|
342 |
+
</center>
|
343 |
+
""")
|
344 |
+
|
345 |
+
with gr.Row():
|
346 |
+
with gr.Column(scale=1):
|
347 |
+
condition = gr.Dropdown(
|
348 |
+
["Pneumonia", "Pneumothorax"],
|
349 |
+
label="Select Condition",
|
350 |
+
value="Pneumonia",
|
351 |
+
interactive=True
|
352 |
+
)
|
353 |
+
num_images = gr.Slider(
|
354 |
+
1, 10, value=1, step=1,
|
355 |
+
label="Number of Images",
|
356 |
+
interactive=True
|
357 |
+
)
|
358 |
+
|
359 |
+
with gr.Row():
|
360 |
+
submit_btn = gr.Button("Generate", variant="primary")
|
361 |
+
cancel_btn = gr.Button("Cancel", variant="stop")
|
362 |
+
|
363 |
+
gr.Markdown("""
|
364 |
+
<div style="text-align: center; margin-top: 10px;">
|
365 |
+
<small>Note: Generation may take several seconds per image</small>
|
366 |
+
</div>
|
367 |
+
""")
|
368 |
+
|
369 |
+
with gr.Column(scale=2):
|
370 |
+
with gr.Tabs():
|
371 |
+
with gr.TabItem("Output", id="output_tab"):
|
372 |
+
single_image = gr.Image(
|
373 |
+
label="Generated X-ray",
|
374 |
+
height=400,
|
375 |
+
visible=True
|
376 |
+
)
|
377 |
+
gallery = gr.Gallery(
|
378 |
+
label="Generated X-rays",
|
379 |
+
columns=3,
|
380 |
+
height="auto",
|
381 |
+
object_fit="contain",
|
382 |
+
visible=False
|
383 |
+
)
|
384 |
+
|
385 |
+
def update_ui_based_on_count(num_images):
|
386 |
+
if num_images == 1:
|
387 |
+
return {
|
388 |
+
single_image: gr.update(visible=True),
|
389 |
+
gallery: gr.update(visible=False)
|
390 |
+
}
|
391 |
+
else:
|
392 |
+
return {
|
393 |
+
single_image: gr.update(visible=False),
|
394 |
+
gallery: gr.update(visible=True)
|
395 |
+
}
|
396 |
+
|
397 |
+
num_images.change(
|
398 |
+
fn=update_ui_based_on_count,
|
399 |
+
inputs=num_images,
|
400 |
+
outputs=[single_image, gallery]
|
401 |
+
)
|
402 |
+
|
403 |
+
submit_btn.click(
|
404 |
+
fn=generate_images,
|
405 |
+
inputs=[condition, num_images],
|
406 |
+
outputs=[single_image, gallery]
|
407 |
+
)
|
408 |
+
|
409 |
+
cancel_btn.click(
|
410 |
+
fn=cancel_generation,
|
411 |
+
outputs=None
|
412 |
+
)
|
413 |
+
|
414 |
+
demo.css = """
|
415 |
+
.gradio-container {
|
416 |
+
background: linear-gradient(135deg, #f5f7fa 0%, #e4e8f0 100%);
|
417 |
+
}
|
418 |
+
.gallery-container {
|
419 |
+
background-color: white !important;
|
420 |
+
}
|
421 |
+
"""
|
422 |
+
|
423 |
+
if __name__ == "__main__":
|
424 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|