Spaces:
Running
Running
Delete app.py
Browse files
app.py
DELETED
@@ -1,423 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import gradio as gr
|
4 |
-
from PIL import Image
|
5 |
-
import numpy as np
|
6 |
-
import math
|
7 |
-
import os
|
8 |
-
from threading import Event
|
9 |
-
import traceback
|
10 |
-
|
11 |
-
# Constants
|
12 |
-
IMG_SIZE = 128
|
13 |
-
TIMESTEPS = 300
|
14 |
-
NUM_CLASSES = 2
|
15 |
-
|
16 |
-
# Global Cancellation Flag
|
17 |
-
cancel_event = Event()
|
18 |
-
|
19 |
-
# Device Configuration
|
20 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
-
|
22 |
-
# --- Model Definitions ---
|
23 |
-
class SinusoidalPositionEmbeddings(nn.Module):
|
24 |
-
def __init__(self, dim):
|
25 |
-
super().__init__()
|
26 |
-
self.dim = dim
|
27 |
-
half_dim = dim // 2
|
28 |
-
emb = math.log(10000) / (half_dim - 1)
|
29 |
-
emb = torch.exp(torch.arange(half_dim) * -emb)
|
30 |
-
self.register_buffer('embeddings', emb)
|
31 |
-
|
32 |
-
def forward(self, time):
|
33 |
-
device = time.device
|
34 |
-
embeddings = self.embeddings.to(device)
|
35 |
-
embeddings = time[:, None] * embeddings[None, :]
|
36 |
-
return torch.cat([embeddings.sin(), embeddings.cos()], dim=-1)
|
37 |
-
|
38 |
-
class UNet(nn.Module):
|
39 |
-
def __init__(self, in_channels=3, out_channels=3, num_classes=2, time_dim=256):
|
40 |
-
super().__init__()
|
41 |
-
self.num_classes = num_classes
|
42 |
-
self.label_embedding = nn.Embedding(num_classes, time_dim)
|
43 |
-
|
44 |
-
self.time_mlp = nn.Sequential(
|
45 |
-
SinusoidalPositionEmbeddings(time_dim),
|
46 |
-
nn.Linear(time_dim, time_dim),
|
47 |
-
nn.ReLU(),
|
48 |
-
nn.Linear(time_dim, time_dim)
|
49 |
-
)
|
50 |
-
|
51 |
-
# Encoder
|
52 |
-
self.inc = self.double_conv(in_channels, 64)
|
53 |
-
self.down1 = self.down(64 + time_dim * 2, 128)
|
54 |
-
self.down2 = self.down(128 + time_dim * 2, 256)
|
55 |
-
self.down3 = self.down(256 + time_dim * 2, 512)
|
56 |
-
|
57 |
-
# Bottleneck
|
58 |
-
self.bottleneck = self.double_conv(512 + time_dim * 2, 1024)
|
59 |
-
|
60 |
-
# Decoder
|
61 |
-
self.up1 = nn.ConvTranspose2d(1024, 256, kernel_size=2, stride=2)
|
62 |
-
self.upconv1 = self.double_conv(256 + 256 + time_dim * 2, 256)
|
63 |
-
|
64 |
-
self.up2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
|
65 |
-
self.upconv2 = self.double_conv(128 + 128 + time_dim * 2, 128)
|
66 |
-
|
67 |
-
self.up3 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
|
68 |
-
self.upconv3 = self.double_conv(64 + 64 + time_dim * 2, 64)
|
69 |
-
|
70 |
-
self.outc = nn.Conv2d(64, out_channels, kernel_size=1)
|
71 |
-
|
72 |
-
def double_conv(self, in_channels, out_channels):
|
73 |
-
return nn.Sequential(
|
74 |
-
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
|
75 |
-
nn.ReLU(inplace=True),
|
76 |
-
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
|
77 |
-
nn.ReLU(inplace=True)
|
78 |
-
)
|
79 |
-
|
80 |
-
def down(self, in_channels, out_channels):
|
81 |
-
return nn.Sequential(
|
82 |
-
nn.MaxPool2d(2),
|
83 |
-
self.double_conv(in_channels, out_channels)
|
84 |
-
)
|
85 |
-
|
86 |
-
def forward(self, x, labels, time):
|
87 |
-
label_indices = torch.argmax(labels, dim=1)
|
88 |
-
label_emb = self.label_embedding(label_indices)
|
89 |
-
t_emb = self.time_mlp(time)
|
90 |
-
|
91 |
-
combined_emb = torch.cat([t_emb, label_emb], dim=1)
|
92 |
-
combined_emb = combined_emb.unsqueeze(-1).unsqueeze(-1)
|
93 |
-
|
94 |
-
x1 = self.inc(x)
|
95 |
-
x1_cat = torch.cat([x1, combined_emb.repeat(1, 1, x1.shape[-2], x1.shape[-1])], dim=1)
|
96 |
-
|
97 |
-
x2 = self.down1(x1_cat)
|
98 |
-
x2_cat = torch.cat([x2, combined_emb.repeat(1, 1, x2.shape[-2], x2.shape[-1])], dim=1)
|
99 |
-
|
100 |
-
x3 = self.down2(x2_cat)
|
101 |
-
x3_cat = torch.cat([x3, combined_emb.repeat(1, 1, x3.shape[-2], x3.shape[-1])], dim=1)
|
102 |
-
|
103 |
-
x4 = self.down3(x3_cat)
|
104 |
-
x4_cat = torch.cat([x4, combined_emb.repeat(1, 1, x4.shape[-2], x4.shape[-1])], dim=1)
|
105 |
-
|
106 |
-
x5 = self.bottleneck(x4_cat)
|
107 |
-
|
108 |
-
x = self.up1(x5)
|
109 |
-
x = torch.cat([x, x3], dim=1)
|
110 |
-
x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
|
111 |
-
x = self.upconv1(x)
|
112 |
-
|
113 |
-
x = self.up2(x)
|
114 |
-
x = torch.cat([x, x2], dim=1)
|
115 |
-
x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
|
116 |
-
x = self.upconv2(x)
|
117 |
-
|
118 |
-
x = self.up3(x)
|
119 |
-
x = torch.cat([x, x1], dim=1)
|
120 |
-
x = torch.cat([x, combined_emb.repeat(1, 1, x.shape[-2], x.shape[-1])], dim=1)
|
121 |
-
x = self.upconv3(x)
|
122 |
-
|
123 |
-
return self.outc(x)
|
124 |
-
|
125 |
-
class DiffusionModel(nn.Module):
|
126 |
-
def __init__(self, model, timesteps=TIMESTEPS, time_dim=256):
|
127 |
-
super().__init__()
|
128 |
-
self.model = model
|
129 |
-
self.timesteps = timesteps
|
130 |
-
self.time_dim = time_dim
|
131 |
-
|
132 |
-
# Linear beta schedule with scaling from second code
|
133 |
-
scale = 1000 / timesteps
|
134 |
-
beta_start = scale * 0.0001
|
135 |
-
beta_end = scale * 0.02
|
136 |
-
self.betas = torch.linspace(beta_start, beta_end, timesteps, dtype=torch.float64)
|
137 |
-
self.alphas = 1. - self.betas
|
138 |
-
self.alpha_bars = torch.cumprod(self.alphas, dim=0).float()
|
139 |
-
|
140 |
-
# Register buffers for device compatibility
|
141 |
-
self.register_buffer('betas_buffer', self.betas)
|
142 |
-
self.register_buffer('alphas_buffer', self.alphas)
|
143 |
-
self.register_buffer('alpha_bars_buffer', self.alpha_bars)
|
144 |
-
|
145 |
-
def forward_diffusion(self, x_0, t, noise):
|
146 |
-
x_0 = x_0.float()
|
147 |
-
noise = noise.float()
|
148 |
-
alpha_bar_t = self.alpha_bars_buffer[t].view(-1, 1, 1, 1)
|
149 |
-
x_t = torch.sqrt(alpha_bar_t) * x_0 + torch.sqrt(1. - alpha_bar_t) * noise
|
150 |
-
return x_t
|
151 |
-
|
152 |
-
def forward(self, x_0, labels):
|
153 |
-
t = torch.randint(0, self.timesteps, (x_0.shape[0],), device=x_0.device).long()
|
154 |
-
noise = torch.randn_like(x_0)
|
155 |
-
x_t = self.forward_diffusion(x_0, t, noise)
|
156 |
-
predicted_noise = self.model(x_t, labels, t.float())
|
157 |
-
return predicted_noise, noise, t
|
158 |
-
|
159 |
-
@torch.no_grad()
|
160 |
-
def sample(self, num_images, img_size, num_classes, labels, device, progress_callback=None):
|
161 |
-
# Start with random noise (slightly reduced variance as in code 2)
|
162 |
-
x_t = torch.randn(num_images, 3, img_size, img_size, device=device) * 0.9
|
163 |
-
|
164 |
-
# Label handling
|
165 |
-
labels = labels.to(device)
|
166 |
-
if labels.ndim == 1:
|
167 |
-
labels_one_hot = torch.zeros(num_images, num_classes, device=device)
|
168 |
-
labels_one_hot.scatter_(1, labels.unsqueeze(1), 1)
|
169 |
-
labels = labels_one_hot
|
170 |
-
|
171 |
-
# ---- OPTIMIZED REVERSE DIFFUSION (from code 2) ----
|
172 |
-
for t in reversed(range(self.timesteps)):
|
173 |
-
if cancel_event.is_set():
|
174 |
-
return None
|
175 |
-
|
176 |
-
t_tensor = torch.full((num_images,), t, device=device, dtype=torch.long)
|
177 |
-
predicted_noise = self.model(x_t, labels, t_tensor)
|
178 |
-
|
179 |
-
# Calculate coefficients
|
180 |
-
beta_t = self.betas_buffer[t].to(device)
|
181 |
-
alpha_t = self.alphas_buffer[t].to(device)
|
182 |
-
alpha_bar_t = self.alpha_bars_buffer[t].to(device)
|
183 |
-
|
184 |
-
mean = (1 / torch.sqrt(alpha_t)) * (x_t - (beta_t / torch.sqrt(1 - alpha_bar_t)) * predicted_noise)
|
185 |
-
|
186 |
-
# Dynamic noise reduction - less noise in later steps (from code 2)
|
187 |
-
if t > 0:
|
188 |
-
noise_factor = 0.6 + 0.4 * (t / self.timesteps) # Ranges from 0.6 to 1.0
|
189 |
-
noise = torch.randn_like(x_t) * noise_factor
|
190 |
-
else:
|
191 |
-
noise = torch.zeros_like(x_t)
|
192 |
-
|
193 |
-
x_t = mean + torch.sqrt(beta_t) * noise
|
194 |
-
|
195 |
-
if progress_callback:
|
196 |
-
progress_callback((self.timesteps - t) / self.timesteps)
|
197 |
-
|
198 |
-
# ---- POST-PROCESSING PIPELINE (from code 2) ----
|
199 |
-
# 1. Denormalize
|
200 |
-
norm_mean = torch.tensor([0.485, 0.456, 0.406], device=device).view(1, 3, 1, 1)
|
201 |
-
norm_std = torch.tensor([0.229, 0.224, 0.225], device=device).view(1, 3, 1, 1)
|
202 |
-
x_0 = torch.clamp(x_t * norm_std + norm_mean, 0, 1)
|
203 |
-
|
204 |
-
# 2. Edge-preserving smoothing (PyTorch implementation)
|
205 |
-
blurred = torch.nn.functional.avg_pool2d(x_0, kernel_size=5, stride=1, padding=2)
|
206 |
-
mask = torch.abs(x_0 - blurred) < 0.1 # Only smooth low-frequency areas
|
207 |
-
x_0 = torch.where(mask, 0.7*x_0 + 0.3*blurred, x_0)
|
208 |
-
|
209 |
-
# 3. Adaptive sharpening
|
210 |
-
sharpening_strength = 1.4 # Slightly stronger than original
|
211 |
-
edge_boost = 0.15 # Additional edge enhancement
|
212 |
-
|
213 |
-
# Main sharpening
|
214 |
-
low_pass = torch.nn.functional.avg_pool2d(x_0, kernel_size=3, stride=1, padding=1)
|
215 |
-
x_0 = torch.clamp((1 + sharpening_strength) * x_0 - sharpening_strength * low_pass, 0, 1)
|
216 |
-
|
217 |
-
# Edge boost (only affects high-contrast areas)
|
218 |
-
edges = x_0 - torch.nn.functional.avg_pool2d(x_0, kernel_size=5, stride=1, padding=2)
|
219 |
-
edges = edges * edge_boost
|
220 |
-
x_0 = torch.clamp(x_0 + edges, 0, 1)
|
221 |
-
|
222 |
-
return x_0
|
223 |
-
|
224 |
-
def load_model(model_path, device):
|
225 |
-
unet_model = UNet(num_classes=NUM_CLASSES).to(device)
|
226 |
-
diffusion_model = DiffusionModel(unet_model, timesteps=TIMESTEPS).to(device)
|
227 |
-
|
228 |
-
if os.path.exists(model_path):
|
229 |
-
checkpoint = torch.load(model_path, map_location=device)
|
230 |
-
|
231 |
-
if 'model_state_dict' in checkpoint:
|
232 |
-
# Handle training checkpoint format
|
233 |
-
state_dict = {
|
234 |
-
k[6:]: v for k, v in checkpoint['model_state_dict'].items()
|
235 |
-
if k.startswith('model.')
|
236 |
-
}
|
237 |
-
|
238 |
-
# Load UNet weights
|
239 |
-
unet_model.load_state_dict(state_dict, strict=False)
|
240 |
-
|
241 |
-
# Initialize diffusion model with loaded UNet
|
242 |
-
diffusion_model = DiffusionModel(unet_model, timesteps=TIMESTEPS).to(device)
|
243 |
-
|
244 |
-
print(f"Loaded UNet weights from {model_path}")
|
245 |
-
else:
|
246 |
-
# Handle direct model weights format
|
247 |
-
try:
|
248 |
-
# First try loading full DiffusionModel
|
249 |
-
diffusion_model.load_state_dict(checkpoint)
|
250 |
-
print(f"Loaded full DiffusionModel from {model_path}")
|
251 |
-
except RuntimeError:
|
252 |
-
# If that fails, load just the UNet weights
|
253 |
-
unet_model.load_state_dict(checkpoint, strict=False)
|
254 |
-
diffusion_model = DiffusionModel(unet_model, timesteps=TIMESTEPS).to(device)
|
255 |
-
print(f"Loaded UNet weights only from {model_path}")
|
256 |
-
else:
|
257 |
-
print(f"Weights file not found at {model_path}")
|
258 |
-
print("Using randomly initialized weights")
|
259 |
-
|
260 |
-
diffusion_model.eval()
|
261 |
-
return diffusion_model
|
262 |
-
|
263 |
-
def cancel_generation():
|
264 |
-
cancel_event.set()
|
265 |
-
return "Generation cancelled"
|
266 |
-
|
267 |
-
def generate_images(label_str, num_images, progress=gr.Progress()):
|
268 |
-
global loaded_model
|
269 |
-
cancel_event.clear()
|
270 |
-
|
271 |
-
if num_images < 1 or num_images > 10:
|
272 |
-
raise gr.Error("Number of images must be between 1 and 10")
|
273 |
-
|
274 |
-
label_map = {'Pneumonia': 0, 'Pneumothorax': 1}
|
275 |
-
if label_str not in label_map:
|
276 |
-
raise gr.Error("Invalid condition selected")
|
277 |
-
|
278 |
-
labels = torch.zeros(num_images, NUM_CLASSES)
|
279 |
-
labels[:, label_map[label_str]] = 1
|
280 |
-
|
281 |
-
try:
|
282 |
-
def progress_callback(progress_val):
|
283 |
-
progress(progress_val, desc="Generating...")
|
284 |
-
if cancel_event.is_set():
|
285 |
-
raise gr.Error("Generation was cancelled by user")
|
286 |
-
|
287 |
-
with torch.no_grad():
|
288 |
-
images = loaded_model.sample(
|
289 |
-
num_images=num_images,
|
290 |
-
img_size=IMG_SIZE,
|
291 |
-
num_classes=NUM_CLASSES,
|
292 |
-
labels=labels,
|
293 |
-
device=device,
|
294 |
-
progress_callback=progress_callback
|
295 |
-
)
|
296 |
-
|
297 |
-
if images is None:
|
298 |
-
return None, None
|
299 |
-
|
300 |
-
processed_images = []
|
301 |
-
for img in images:
|
302 |
-
img_np = img.cpu().permute(1, 2, 0).numpy()
|
303 |
-
img_np = (img_np * 255).clip(0, 255).astype(np.uint8)
|
304 |
-
pil_img = Image.fromarray(img_np)
|
305 |
-
processed_images.append(pil_img)
|
306 |
-
|
307 |
-
if num_images == 1:
|
308 |
-
return processed_images[0], processed_images
|
309 |
-
else:
|
310 |
-
return None, processed_images
|
311 |
-
|
312 |
-
except Exception as e:
|
313 |
-
traceback.print_exc()
|
314 |
-
raise gr.Error(f"Generation failed: {str(e)}")
|
315 |
-
finally:
|
316 |
-
torch.cuda.empty_cache()
|
317 |
-
|
318 |
-
# Load model
|
319 |
-
MODEL_NAME = "model_weights.pth"
|
320 |
-
model_path = MODEL_NAME
|
321 |
-
print("Loading model...")
|
322 |
-
try:
|
323 |
-
loaded_model = load_model(model_path, device)
|
324 |
-
print("Model loaded successfully!")
|
325 |
-
except Exception as e:
|
326 |
-
print(f"Failed to load model: {e}")
|
327 |
-
print("Creating dummy model for demonstration")
|
328 |
-
loaded_model = DiffusionModel(UNet(num_classes=NUM_CLASSES), timesteps=TIMESTEPS).to(device)
|
329 |
-
|
330 |
-
# Gradio UI
|
331 |
-
with gr.Blocks(theme=gr.themes.Soft(
|
332 |
-
primary_hue="violet",
|
333 |
-
neutral_hue="slate",
|
334 |
-
font=[gr.themes.GoogleFont("Poppins")],
|
335 |
-
text_size="md"
|
336 |
-
)) as demo:
|
337 |
-
gr.Markdown("""
|
338 |
-
<center>
|
339 |
-
<h1>Synthetic X-ray Generator</h1>
|
340 |
-
<p><em>Generate synthetic chest X-rays conditioned on pathology</em></p>
|
341 |
-
</center>
|
342 |
-
""")
|
343 |
-
|
344 |
-
with gr.Row():
|
345 |
-
with gr.Column(scale=1):
|
346 |
-
condition = gr.Dropdown(
|
347 |
-
["Pneumonia", "Pneumothorax"],
|
348 |
-
label="Select Condition",
|
349 |
-
value="Pneumonia",
|
350 |
-
interactive=True
|
351 |
-
)
|
352 |
-
num_images = gr.Slider(
|
353 |
-
1, 10, value=1, step=1,
|
354 |
-
label="Number of Images",
|
355 |
-
interactive=True
|
356 |
-
)
|
357 |
-
|
358 |
-
with gr.Row():
|
359 |
-
submit_btn = gr.Button("Generate", variant="primary")
|
360 |
-
cancel_btn = gr.Button("Cancel", variant="stop")
|
361 |
-
|
362 |
-
gr.Markdown("""
|
363 |
-
<div style="text-align: center; margin-top: 10px;">
|
364 |
-
<small>Note: Generation may take several seconds per image</small>
|
365 |
-
</div>
|
366 |
-
""")
|
367 |
-
|
368 |
-
with gr.Column(scale=2):
|
369 |
-
with gr.Tabs():
|
370 |
-
with gr.TabItem("Output", id="output_tab"):
|
371 |
-
single_image = gr.Image(
|
372 |
-
label="Generated X-ray",
|
373 |
-
height=400,
|
374 |
-
visible=True
|
375 |
-
)
|
376 |
-
gallery = gr.Gallery(
|
377 |
-
label="Generated X-rays",
|
378 |
-
columns=3,
|
379 |
-
height="auto",
|
380 |
-
object_fit="contain",
|
381 |
-
visible=False
|
382 |
-
)
|
383 |
-
|
384 |
-
def update_ui_based_on_count(num_images):
|
385 |
-
if num_images == 1:
|
386 |
-
return {
|
387 |
-
single_image: gr.update(visible=True),
|
388 |
-
gallery: gr.update(visible=False)
|
389 |
-
}
|
390 |
-
else:
|
391 |
-
return {
|
392 |
-
single_image: gr.update(visible=False),
|
393 |
-
gallery: gr.update(visible=True)
|
394 |
-
}
|
395 |
-
|
396 |
-
num_images.change(
|
397 |
-
fn=update_ui_based_on_count,
|
398 |
-
inputs=num_images,
|
399 |
-
outputs=[single_image, gallery]
|
400 |
-
)
|
401 |
-
|
402 |
-
submit_btn.click(
|
403 |
-
fn=generate_images,
|
404 |
-
inputs=[condition, num_images],
|
405 |
-
outputs=[single_image, gallery]
|
406 |
-
)
|
407 |
-
|
408 |
-
cancel_btn.click(
|
409 |
-
fn=cancel_generation,
|
410 |
-
outputs=None
|
411 |
-
)
|
412 |
-
|
413 |
-
demo.css = """
|
414 |
-
.gradio-container {
|
415 |
-
background: linear-gradient(135deg, #f5f7fa 0%, #e4e8f0 100%);
|
416 |
-
}
|
417 |
-
.gallery-container {
|
418 |
-
background-color: white !important;
|
419 |
-
}
|
420 |
-
"""
|
421 |
-
|
422 |
-
if __name__ == "__main__":
|
423 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|