File size: 9,079 Bytes
2ec7d5b
 
ebef9a1
176df74
c7133b5
176df74
2ec7d5b
 
 
ebef9a1
176df74
 
 
2ec7d5b
ebef9a1
2ec7d5b
 
ebef9a1
2ec7d5b
 
 
 
176df74
 
c7133b5
176df74
2ec7d5b
176df74
 
c7133b5
176df74
fd627d4
 
 
 
176df74
 
fd627d4
176df74
 
 
 
 
85fe9b7
fd627d4
176df74
 
fd627d4
 
 
176df74
2ec7d5b
176df74
 
 
 
 
fd627d4
176df74
85fe9b7
176df74
 
 
c7133b5
 
fd627d4
c7133b5
85fe9b7
2ec7d5b
176df74
 
 
 
 
 
 
 
ebef9a1
 
176df74
ebef9a1
 
176df74
 
 
 
 
 
 
 
 
 
 
2ec7d5b
 
 
 
ebef9a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd627d4
ebef9a1
 
 
 
 
 
c7133b5
 
 
 
176df74
 
c7133b5
 
 
 
 
 
 
2ec7d5b
85fe9b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ec7d5b
176df74
85fe9b7
 
176df74
 
 
 
 
 
 
 
 
 
ebef9a1
 
 
 
 
 
 
176df74
 
 
 
 
ebef9a1
 
 
 
 
 
 
176df74
 
 
ebef9a1
176df74
ebef9a1
 
176df74
 
 
2ec7d5b
17d94c7
176df74
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from flask import Flask, request, jsonify, render_template_string
import os
import uuid
import torch
from detoxify import Detoxify
from transformers import AutoModelForSequenceClassification, AutoTokenizer

app = Flask(__name__)

# Modelleri yükle
detoxify_model = Detoxify('multilingual')
koala_model = AutoModelForSequenceClassification.from_pretrained("KoalaAI/Text-Moderation")
koala_tokenizer = AutoTokenizer.from_pretrained("KoalaAI/Text-Moderation")

# API key environment variable'dan
API_KEY = os.getenv('API_KEY')

# Modern, TailwindCSS destekli HTML arayüzü (dark/light)
HTML_TEMPLATE = '''
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <title>Modern Moderation API Test</title>
  <script src="https://cdn.tailwindcss.com"></script>
</head>
<body class="bg-gray-100 dark:bg-gray-900 text-gray-900 dark:text-gray-100">
  <div class="container mx-auto px-4 py-8">
    <h1 class="text-4xl font-bold mb-6 text-center">Modern Moderation API Test</h1>
    <form id="testForm" class="bg-white dark:bg-gray-800 shadow-md rounded px-8 pt-6 pb-8 mb-4">
      <div class="mb-4">
        <label class="block text-gray-700 dark:text-gray-300 text-sm font-bold mb-2" for="api_key">API Key:</label>
        <input type="text" id="api_key" name="api_key" required class="shadow appearance-none border rounded w-full py-2 px-3 text-gray-700 dark:text-gray-900 leading-tight focus:outline-none focus:shadow-outline">
      </div>
      <div class="mb-4">
        <label class="block text-gray-700 dark:text-gray-300 text-sm font-bold mb-2" for="model">Select Model:</label>
        <select id="model" name="model" class="shadow appearance-none border rounded w-full py-2 px-3 text-gray-700 dark:text-gray-900 leading-tight focus:outline-none focus:shadow-outline">
          <option value="unitaryai/detoxify-multilingual" selected>unitaryai/detoxify-multilingual</option>
          <option value="koalaai/text-moderation">koalaai/text-moderation</option>
        </select>
      </div>
      <div class="mb-4">
        <label class="block text-gray-700 dark:text-gray-300 text-sm font-bold mb-2" for="input">Text to Analyze:</label>
        <textarea id="input" name="input" rows="4" required class="shadow appearance-none border rounded w-full py-2 px-3 text-gray-700 dark:text-gray-900 leading-tight focus:outline-none focus:shadow-outline"></textarea>
      </div>
      <div class="flex items-center justify-between">
        <button type="submit" class="bg-blue-500 hover:bg-blue-700 text-white font-bold py-2 px-4 rounded focus:outline-none focus:shadow-outline">
          Analyze
        </button>
      </div>
    </form>
    <div id="results" class="mt-6"></div>
  </div>
  <script>
    document.getElementById('testForm').addEventListener('submit', async function(event) {
      event.preventDefault();
      const apiKey = document.getElementById('api_key').value;
      const model = document.getElementById('model').value;
      const input = document.getElementById('input').value;
      try {
        const response = await fetch('/v1/moderations', {
          method: 'POST',
          headers: { 
              'Content-Type': 'application/json',
              'Authorization': 'Bearer ' + apiKey
          },
          body: JSON.stringify({ model: model, input: input })
        });
        const data = await response.json();
        const resultsDiv = document.getElementById('results');
        if (data.error) {
          resultsDiv.innerHTML = `<p class="text-red-500 font-bold">Error: ${data.error}</p>`;
        } else {
          let html = '<h2 class="text-2xl font-bold mb-4">Results:</h2>';
          data.results.forEach(item => {
            html += `<div class="mb-4 p-4 bg-gray-200 dark:bg-gray-700 rounded">
                       <p class="font-semibold">Flagged: ${item.flagged}</p>
                       <p class="font-semibold">Categories:</p>
                       <ul>`;
            for (const [key, value] of Object.entries(item.categories)) {
              html += `<li>${key}: ${value} (score: ${item.category_scores[key].toFixed(5)})</li>`;
            }
            html += `  </ul>
                     </div>`;
          });
          resultsDiv.innerHTML = html;
        }
      } catch (error) {
        console.error('Error:', error);
      }
    });
  </script>
</body>
</html>
'''

def transform_predictions(model_choice, prediction_dict):
    """
    OpenAI tarzı response formatı için tahminleri dönüştür.
    Dönüştürülen alanlar: flagged, categories, category_scores, category_applied_input_types
    """
    category_keys = [
        "sexual", "sexual/minors", "harassment", "harassment/threatening",
        "hate", "hate/threatening", "illicit", "illicit/violent",
        "self-harm", "self-harm/intent", "self-harm/instructions",
        "violence", "violence/graphic"
    ]
    scores = {}
    if model_choice == "unitaryai/detoxify-multilingual":
        scores["sexual"] = prediction_dict.get("sexual_explicit", 0.0)
        scores["harassment"] = max(prediction_dict.get("identity_attack", 0.0), prediction_dict.get("insult", 0.0))
        scores["hate"] = prediction_dict.get("toxicity", 0.0)
        scores["violence"] = max(prediction_dict.get("severe_toxicity", 0.0), prediction_dict.get("threat", 0.0))
        for key in category_keys:
            if key not in scores:
                scores[key] = 0.0
    else:
        for key in category_keys:
            scores[key] = prediction_dict.get(key, 0.0)
    
    threshold = 0.5
    bool_categories = {key: (scores[key] > threshold) for key in category_keys}
    cat_applied_input_types = {key: (["text"] if scores[key] > 0 else []) for key in category_keys}
    flagged = any(bool_categories.values())
    
    return flagged, bool_categories, scores, cat_applied_input_types

@app.route('/')
def home():
    return render_template_string(HTML_TEMPLATE)

@app.route('/v1/moderations', methods=['POST'])
def moderations():
    auth_header = request.headers.get('Authorization')
    if not auth_header or not auth_header.startswith("Bearer "):
        return jsonify({"error": "Unauthorized"}), 401
    provided_api_key = auth_header.split(" ")[1]
    if provided_api_key != API_KEY:
        return jsonify({"error": "Unauthorized"}), 401

    data = request.get_json()
    raw_input = data.get('input') or data.get('texts')
    if raw_input is None:
        return jsonify({"error": "Invalid input, expected 'input' or 'texts' field"}), 400

    if isinstance(raw_input, str):
        texts = [raw_input]
    elif isinstance(raw_input, list):
        texts = raw_input
    else:
        return jsonify({"error": "Invalid input format, expected string or list of strings"}), 400

    if len(texts) > 10:
        return jsonify({"error": "Too many input items. Maximum 10 allowed."}), 400

    for text in texts:
        if not isinstance(text, str) or len(text) > 100000:
            return jsonify({"error": "Each input item must be a string with a maximum of 100k characters."}), 400

    results = []
    model_choice = data.get('model', 'unitaryai/detoxify-multilingual')

    if model_choice == "koalaai/text-moderation":
        for text in texts:
            inputs = koala_tokenizer(text, return_tensors="pt")
            outputs = koala_model(**inputs)
            logits = outputs.logits
            probabilities = torch.softmax(logits, dim=-1).squeeze().tolist()
            if isinstance(probabilities, float):
                probabilities = [probabilities]
            labels = [koala_model.config.id2label[idx] for idx in range(len(probabilities))]
            prediction = {label: prob for label, prob in zip(labels, probabilities)}
            flagged, bool_categories, scores, cat_applied_input_types = transform_predictions(model_choice, prediction)
            results.append({
                "flagged": flagged,
                "categories": bool_categories,
                "category_scores": scores,
                "category_applied_input_types": cat_applied_input_types
            })
        response_model = "koalaai/text-moderation"
    else:
        for text in texts:
            pred = detoxify_model.predict([text])
            prediction = {k: v[0] for k, v in pred.items()}
            flagged, bool_categories, scores, cat_applied_input_types = transform_predictions(model_choice, prediction)
            results.append({
                "flagged": flagged,
                "categories": bool_categories,
                "category_scores": scores,
                "category_applied_input_types": cat_applied_input_types
            })
        response_model = "unitaryai/detoxify-multilingual"

    response_data = {
        "id": "modr-" + uuid.uuid4().hex[:24],
        "model": response_model,
        "results": results,
        "object": "moderation"
    }
    return jsonify(response_data)

if __name__ == '__main__':
    port = int(os.getenv('PORT', 7860))
    app.run(host='0.0.0.0', port=port, debug=True)