Changed usage
Browse files
app.py
CHANGED
@@ -1,20 +1,21 @@
|
|
1 |
from flask import Flask, request, jsonify, render_template_string
|
2 |
import os
|
|
|
3 |
import torch
|
4 |
from detoxify import Detoxify
|
5 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
6 |
|
7 |
app = Flask(__name__)
|
8 |
|
9 |
-
#
|
10 |
detoxify_model = Detoxify('multilingual')
|
11 |
koala_model = AutoModelForSequenceClassification.from_pretrained("KoalaAI/Text-Moderation")
|
12 |
koala_tokenizer = AutoTokenizer.from_pretrained("KoalaAI/Text-Moderation")
|
13 |
|
14 |
-
# API key
|
15 |
API_KEY = os.getenv('API_KEY')
|
16 |
|
17 |
-
# Modern
|
18 |
HTML_TEMPLATE = '''
|
19 |
<!DOCTYPE html>
|
20 |
<html lang="en">
|
@@ -55,7 +56,7 @@ HTML_TEMPLATE = '''
|
|
55 |
method: 'POST',
|
56 |
headers: {
|
57 |
'Content-Type': 'application/json',
|
58 |
-
'Authorization': 'Bearer YOUR_API_KEY' //
|
59 |
},
|
60 |
body: JSON.stringify({ model: model, texts: [text] })
|
61 |
});
|
@@ -67,10 +68,11 @@ HTML_TEMPLATE = '''
|
|
67 |
let html = '<h2 class="text-2xl font-bold mb-4">Results:</h2>';
|
68 |
data.results.forEach(item => {
|
69 |
html += `<div class="mb-4 p-4 bg-gray-200 dark:bg-gray-700 rounded">
|
70 |
-
<p class="font-semibold">
|
|
|
71 |
<ul>`;
|
72 |
-
for (const [key, value] of Object.entries(item.
|
73 |
-
html += `<li>${key}: ${value.toFixed(5)}</li>`;
|
74 |
}
|
75 |
html += ` </ul>
|
76 |
</div>`;
|
@@ -86,13 +88,53 @@ HTML_TEMPLATE = '''
|
|
86 |
</html>
|
87 |
'''
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
@app.route('/')
|
90 |
def home():
|
91 |
return render_template_string(HTML_TEMPLATE)
|
92 |
|
93 |
@app.route('/v1/moderations', methods=['POST'])
|
94 |
def moderations():
|
95 |
-
#
|
96 |
auth_header = request.headers.get('Authorization')
|
97 |
if not auth_header or not auth_header.startswith("Bearer "):
|
98 |
return jsonify({"error": "Unauthorized"}), 401
|
@@ -108,29 +150,45 @@ def moderations():
|
|
108 |
return jsonify({"error": "Invalid input, expected a list of texts"}), 400
|
109 |
|
110 |
results = []
|
|
|
111 |
if model_choice == "koalaai/text-moderation":
|
112 |
for text in texts:
|
113 |
inputs = koala_tokenizer(text, return_tensors="pt")
|
114 |
outputs = koala_model(**inputs)
|
115 |
logits = outputs.logits
|
116 |
probabilities = torch.softmax(logits, dim=-1).squeeze().tolist()
|
|
|
117 |
if isinstance(probabilities, float):
|
118 |
probabilities = [probabilities]
|
119 |
labels = [koala_model.config.id2label[idx] for idx in range(len(probabilities))]
|
120 |
prediction = {label: prob for label, prob in zip(labels, probabilities)}
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
response_model = "koalaai/text-moderation"
|
123 |
else:
|
124 |
for text in texts:
|
125 |
pred = detoxify_model.predict([text])
|
|
|
126 |
prediction = {k: v[0] for k, v in pred.items()}
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
response_model = "unitaryai/detoxify-multilingual"
|
129 |
|
130 |
response_data = {
|
131 |
-
"
|
132 |
"model": response_model,
|
133 |
-
"results": results
|
|
|
134 |
}
|
135 |
return jsonify(response_data)
|
136 |
|
|
|
1 |
from flask import Flask, request, jsonify, render_template_string
|
2 |
import os
|
3 |
+
import uuid
|
4 |
import torch
|
5 |
from detoxify import Detoxify
|
6 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
7 |
|
8 |
app = Flask(__name__)
|
9 |
|
10 |
+
# Modelleri yükle
|
11 |
detoxify_model = Detoxify('multilingual')
|
12 |
koala_model = AutoModelForSequenceClassification.from_pretrained("KoalaAI/Text-Moderation")
|
13 |
koala_tokenizer = AutoTokenizer.from_pretrained("KoalaAI/Text-Moderation")
|
14 |
|
15 |
+
# API key environment variable'dan
|
16 |
API_KEY = os.getenv('API_KEY')
|
17 |
|
18 |
+
# Modern, TailwindCSS destekli HTML arayüzü (dark/light)
|
19 |
HTML_TEMPLATE = '''
|
20 |
<!DOCTYPE html>
|
21 |
<html lang="en">
|
|
|
56 |
method: 'POST',
|
57 |
headers: {
|
58 |
'Content-Type': 'application/json',
|
59 |
+
'Authorization': 'Bearer YOUR_API_KEY' // Değiştir!
|
60 |
},
|
61 |
body: JSON.stringify({ model: model, texts: [text] })
|
62 |
});
|
|
|
68 |
let html = '<h2 class="text-2xl font-bold mb-4">Results:</h2>';
|
69 |
data.results.forEach(item => {
|
70 |
html += `<div class="mb-4 p-4 bg-gray-200 dark:bg-gray-700 rounded">
|
71 |
+
<p class="font-semibold">Flagged: ${item.flagged}</p>
|
72 |
+
<p class="font-semibold">Categories:</p>
|
73 |
<ul>`;
|
74 |
+
for (const [key, value] of Object.entries(item.categories)) {
|
75 |
+
html += `<li>${key}: ${value} (score: ${item.category_scores[key].toFixed(5)})</li>`;
|
76 |
}
|
77 |
html += ` </ul>
|
78 |
</div>`;
|
|
|
88 |
</html>
|
89 |
'''
|
90 |
|
91 |
+
def transform_predictions(model_choice, prediction_dict):
|
92 |
+
"""
|
93 |
+
OpenAI tarzı response formatı için tahminleri dönüştür.
|
94 |
+
Dönüştürülen alanlar: flagged, categories, category_scores, category_applied_input_types
|
95 |
+
"""
|
96 |
+
# OpenAI'nın moderasyon API'sinde kullanılan kategori anahtarları
|
97 |
+
category_keys = [
|
98 |
+
"sexual", "sexual/minors", "harassment", "harassment/threatening",
|
99 |
+
"hate", "hate/threatening", "illicit", "illicit/violent",
|
100 |
+
"self-harm", "self-harm/intent", "self-harm/instructions",
|
101 |
+
"violence", "violence/graphic"
|
102 |
+
]
|
103 |
+
scores = {}
|
104 |
+
# Detoxify modeli için örnek eşleştirme:
|
105 |
+
if model_choice == "unitaryai/detoxify-multilingual":
|
106 |
+
scores["sexual"] = prediction_dict.get("sexual_explicit", 0.0)
|
107 |
+
scores["harassment"] = max(prediction_dict.get("identity_attack", 0.0), prediction_dict.get("insult", 0.0))
|
108 |
+
scores["hate"] = prediction_dict.get("toxicity", 0.0)
|
109 |
+
scores["violence"] = max(prediction_dict.get("severe_toxicity", 0.0), prediction_dict.get("threat", 0.0))
|
110 |
+
# Diğer kategoriler için varsayılan 0 değeri
|
111 |
+
for key in category_keys:
|
112 |
+
if key not in scores:
|
113 |
+
scores[key] = 0.0
|
114 |
+
else:
|
115 |
+
# Koala modelinden gelen tahminlerde, label isimleri doğrudan uyumlu olabilir;
|
116 |
+
# uyumlu değilse varsayılan 0 değeri ver.
|
117 |
+
for key in category_keys:
|
118 |
+
scores[key] = prediction_dict.get(key, 0.0)
|
119 |
+
|
120 |
+
# Kategori boolean değerleri; eşik değeri: 0.7
|
121 |
+
threshold = 0.7
|
122 |
+
bool_categories = {key: (scores[key] > threshold) for key in category_keys}
|
123 |
+
# category_applied_input_types: biz text ile çalıştığımız için, skor > 0 ise ["text"] değilse boş liste
|
124 |
+
cat_applied_input_types = {key: (["text"] if scores[key] > 0 else []) for key in category_keys}
|
125 |
+
|
126 |
+
# Flagged: herhangi bir kategori eşik değerinin üzerinde ise True
|
127 |
+
flagged = any(bool_categories.values())
|
128 |
+
|
129 |
+
return flagged, bool_categories, scores, cat_applied_input_types
|
130 |
+
|
131 |
@app.route('/')
|
132 |
def home():
|
133 |
return render_template_string(HTML_TEMPLATE)
|
134 |
|
135 |
@app.route('/v1/moderations', methods=['POST'])
|
136 |
def moderations():
|
137 |
+
# Authorization header'dan API key kontrolü
|
138 |
auth_header = request.headers.get('Authorization')
|
139 |
if not auth_header or not auth_header.startswith("Bearer "):
|
140 |
return jsonify({"error": "Unauthorized"}), 401
|
|
|
150 |
return jsonify({"error": "Invalid input, expected a list of texts"}), 400
|
151 |
|
152 |
results = []
|
153 |
+
# Her bir metin için tahmin ve transform işlemi
|
154 |
if model_choice == "koalaai/text-moderation":
|
155 |
for text in texts:
|
156 |
inputs = koala_tokenizer(text, return_tensors="pt")
|
157 |
outputs = koala_model(**inputs)
|
158 |
logits = outputs.logits
|
159 |
probabilities = torch.softmax(logits, dim=-1).squeeze().tolist()
|
160 |
+
# Eğer tek değer ise listeye çevir
|
161 |
if isinstance(probabilities, float):
|
162 |
probabilities = [probabilities]
|
163 |
labels = [koala_model.config.id2label[idx] for idx in range(len(probabilities))]
|
164 |
prediction = {label: prob for label, prob in zip(labels, probabilities)}
|
165 |
+
flagged, bool_categories, scores, cat_applied_input_types = transform_predictions(model_choice, prediction)
|
166 |
+
results.append({
|
167 |
+
"flagged": flagged,
|
168 |
+
"categories": bool_categories,
|
169 |
+
"category_scores": scores,
|
170 |
+
"category_applied_input_types": cat_applied_input_types
|
171 |
+
})
|
172 |
response_model = "koalaai/text-moderation"
|
173 |
else:
|
174 |
for text in texts:
|
175 |
pred = detoxify_model.predict([text])
|
176 |
+
# Detoxify sonuçları liste formatında, tek değer alıyoruz
|
177 |
prediction = {k: v[0] for k, v in pred.items()}
|
178 |
+
flagged, bool_categories, scores, cat_applied_input_types = transform_predictions(model_choice, prediction)
|
179 |
+
results.append({
|
180 |
+
"flagged": flagged,
|
181 |
+
"categories": bool_categories,
|
182 |
+
"category_scores": scores,
|
183 |
+
"category_applied_input_types": cat_applied_input_types
|
184 |
+
})
|
185 |
response_model = "unitaryai/detoxify-multilingual"
|
186 |
|
187 |
response_data = {
|
188 |
+
"id": "modr-" + uuid.uuid4().hex[:24],
|
189 |
"model": response_model,
|
190 |
+
"results": results,
|
191 |
+
"object": "moderation"
|
192 |
}
|
193 |
return jsonify(response_data)
|
194 |
|