Traly's picture
init
193c713
import torch
import torch.nn.functional as F
import torchvision
from torch.autograd import Variable
import numpy as np
from math import exp
import torch.nn as nn
class ImgMerger:
def __init__(self, eval_fn):
self.eval_fn = eval_fn
self.loc2imgs = {}
self.max_x = 0
self.max_y = 0
self.clear()
def clear(self):
self.loc2imgs = {}
self.max_x = 0
self.max_y = 0
def push(self, imgs, loc, loc_bdr):
"""
Args:
imgs: each of img is [C, H, W] np.array, range: [0, 255]
loc: string, e.g., 0_0, 0_1 ...
"""
self.max_x, self.max_y = loc_bdr
x, y = loc
self.loc2imgs[f'{x},{y}'] = imgs
if len(self.loc2imgs) == self.max_x * self.max_y:
return self.compute()
def compute(self):
img_inputs = []
for i in range(len(self.loc2imgs['0,0'])):
img_full = []
for x in range(self.max_x):
imgx = []
for y in range(self.max_y):
imgx.append(self.loc2imgs[f'{x},{y}'][i])
img_full.append(np.concatenate(imgx, 2))
img_inputs.append(np.concatenate(img_full, 1))
self.clear()
return self.eval_fn(*img_inputs)
##########
# SSIM
##########
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
return gauss / gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
return window
def _ssim(img1, img2, window, window_size, channel, size_average=True):
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2
C1 = 0.01 ** 2
C2 = 0.03 ** 2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1).mean(1).mean(1)
class SSIM(torch.nn.Module):
def __init__(self, window_size=11, size_average=True):
super(SSIM, self).__init__()
self.window_size = window_size
self.size_average = size_average
self.channel = 1
self.window = create_window(window_size, self.channel)
def forward(self, img1, img2):
img1 = img1 * 0.5 + 0.5
img2 = img2 * 0.5 + 0.5
(_, channel, _, _) = img1.size()
if channel == self.channel and self.window.data.type() == img1.data.type():
window = self.window
else:
window = create_window(self.window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
self.window = window
self.channel = channel
return _ssim(img1, img2, window, self.window_size, channel, self.size_average)
def ssim(img1, img2, window_size=11, size_average=True):
(_, channel, _, _) = img1.size()
window = create_window(window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
return _ssim(img1, img2, window, window_size, channel, size_average)
class VGGFeatureExtractor(nn.Module):
def __init__(self, feature_layer=34, use_bn=False, use_input_norm=True):
super(VGGFeatureExtractor, self).__init__()
self.use_input_norm = use_input_norm
if use_bn:
model = torchvision.models.vgg19_bn(pretrained=True)
else:
model = torchvision.models.vgg19(pretrained=True)
if self.use_input_norm:
mean = torch.Tensor([0.485 - 1, 0.456 - 1, 0.406 - 1]).view(1, 3, 1, 1)
# mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)
# [0.485 - 1, 0.456 - 1, 0.406 - 1] if input in range [-1, 1]
std = torch.Tensor([0.229 * 2, 0.224 * 2, 0.225 * 2]).view(1, 3, 1, 1)
# std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)
# [0.229 * 2, 0.224 * 2, 0.225 * 2] if input in range [-1, 1]
self.register_buffer('mean', mean)
self.register_buffer('std', std)
self.features = nn.Sequential(*list(model.features.children())[:(feature_layer + 1)])
# No need to BP to variable
for k, v in self.features.named_parameters():
v.requires_grad = False
def forward(self, x):
# Assume input range is [0, 1]
if self.use_input_norm:
x = (x - self.mean) / self.std
output = self.features(x)
return output
class PerceptualLoss(nn.Module):
def __init__(self):
super(PerceptualLoss, self).__init__()
loss_network = VGGFeatureExtractor()
for param in loss_network.parameters():
param.requires_grad = False
self.loss_network = loss_network
self.l1_loss = nn.L1Loss()
def forward(self, high_resolution, fake_high_resolution):
if next(self.loss_network.parameters()).device != high_resolution.device:
self.loss_network.to(high_resolution.device)
self.loss_network.eval()
perception_loss = self.l1_loss(self.loss_network(high_resolution), self.loss_network(fake_high_resolution))
return perception_loss