Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn.functional as F | |
import torchvision | |
from torch.autograd import Variable | |
import numpy as np | |
from math import exp | |
import torch.nn as nn | |
class ImgMerger: | |
def __init__(self, eval_fn): | |
self.eval_fn = eval_fn | |
self.loc2imgs = {} | |
self.max_x = 0 | |
self.max_y = 0 | |
self.clear() | |
def clear(self): | |
self.loc2imgs = {} | |
self.max_x = 0 | |
self.max_y = 0 | |
def push(self, imgs, loc, loc_bdr): | |
""" | |
Args: | |
imgs: each of img is [C, H, W] np.array, range: [0, 255] | |
loc: string, e.g., 0_0, 0_1 ... | |
""" | |
self.max_x, self.max_y = loc_bdr | |
x, y = loc | |
self.loc2imgs[f'{x},{y}'] = imgs | |
if len(self.loc2imgs) == self.max_x * self.max_y: | |
return self.compute() | |
def compute(self): | |
img_inputs = [] | |
for i in range(len(self.loc2imgs['0,0'])): | |
img_full = [] | |
for x in range(self.max_x): | |
imgx = [] | |
for y in range(self.max_y): | |
imgx.append(self.loc2imgs[f'{x},{y}'][i]) | |
img_full.append(np.concatenate(imgx, 2)) | |
img_inputs.append(np.concatenate(img_full, 1)) | |
self.clear() | |
return self.eval_fn(*img_inputs) | |
########## | |
# SSIM | |
########## | |
def gaussian(window_size, sigma): | |
gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)]) | |
return gauss / gauss.sum() | |
def create_window(window_size, channel): | |
_1D_window = gaussian(window_size, 1.5).unsqueeze(1) | |
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) | |
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous()) | |
return window | |
def _ssim(img1, img2, window, window_size, channel, size_average=True): | |
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) | |
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) | |
mu1_sq = mu1.pow(2) | |
mu2_sq = mu2.pow(2) | |
mu1_mu2 = mu1 * mu2 | |
sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq | |
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq | |
sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2 | |
C1 = 0.01 ** 2 | |
C2 = 0.03 ** 2 | |
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) | |
if size_average: | |
return ssim_map.mean() | |
else: | |
return ssim_map.mean(1).mean(1).mean(1) | |
class SSIM(torch.nn.Module): | |
def __init__(self, window_size=11, size_average=True): | |
super(SSIM, self).__init__() | |
self.window_size = window_size | |
self.size_average = size_average | |
self.channel = 1 | |
self.window = create_window(window_size, self.channel) | |
def forward(self, img1, img2): | |
img1 = img1 * 0.5 + 0.5 | |
img2 = img2 * 0.5 + 0.5 | |
(_, channel, _, _) = img1.size() | |
if channel == self.channel and self.window.data.type() == img1.data.type(): | |
window = self.window | |
else: | |
window = create_window(self.window_size, channel) | |
if img1.is_cuda: | |
window = window.cuda(img1.get_device()) | |
window = window.type_as(img1) | |
self.window = window | |
self.channel = channel | |
return _ssim(img1, img2, window, self.window_size, channel, self.size_average) | |
def ssim(img1, img2, window_size=11, size_average=True): | |
(_, channel, _, _) = img1.size() | |
window = create_window(window_size, channel) | |
if img1.is_cuda: | |
window = window.cuda(img1.get_device()) | |
window = window.type_as(img1) | |
return _ssim(img1, img2, window, window_size, channel, size_average) | |
class VGGFeatureExtractor(nn.Module): | |
def __init__(self, feature_layer=34, use_bn=False, use_input_norm=True): | |
super(VGGFeatureExtractor, self).__init__() | |
self.use_input_norm = use_input_norm | |
if use_bn: | |
model = torchvision.models.vgg19_bn(pretrained=True) | |
else: | |
model = torchvision.models.vgg19(pretrained=True) | |
if self.use_input_norm: | |
mean = torch.Tensor([0.485 - 1, 0.456 - 1, 0.406 - 1]).view(1, 3, 1, 1) | |
# mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1) | |
# [0.485 - 1, 0.456 - 1, 0.406 - 1] if input in range [-1, 1] | |
std = torch.Tensor([0.229 * 2, 0.224 * 2, 0.225 * 2]).view(1, 3, 1, 1) | |
# std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1) | |
# [0.229 * 2, 0.224 * 2, 0.225 * 2] if input in range [-1, 1] | |
self.register_buffer('mean', mean) | |
self.register_buffer('std', std) | |
self.features = nn.Sequential(*list(model.features.children())[:(feature_layer + 1)]) | |
# No need to BP to variable | |
for k, v in self.features.named_parameters(): | |
v.requires_grad = False | |
def forward(self, x): | |
# Assume input range is [0, 1] | |
if self.use_input_norm: | |
x = (x - self.mean) / self.std | |
output = self.features(x) | |
return output | |
class PerceptualLoss(nn.Module): | |
def __init__(self): | |
super(PerceptualLoss, self).__init__() | |
loss_network = VGGFeatureExtractor() | |
for param in loss_network.parameters(): | |
param.requires_grad = False | |
self.loss_network = loss_network | |
self.l1_loss = nn.L1Loss() | |
def forward(self, high_resolution, fake_high_resolution): | |
if next(self.loss_network.parameters()).device != high_resolution.device: | |
self.loss_network.to(high_resolution.device) | |
self.loss_network.eval() | |
perception_loss = self.l1_loss(self.loss_network(high_resolution), self.loss_network(fake_high_resolution)) | |
return perception_loss | |