import torch import torch.nn.functional as F import torchvision from torch.autograd import Variable import numpy as np from math import exp import torch.nn as nn class ImgMerger: def __init__(self, eval_fn): self.eval_fn = eval_fn self.loc2imgs = {} self.max_x = 0 self.max_y = 0 self.clear() def clear(self): self.loc2imgs = {} self.max_x = 0 self.max_y = 0 def push(self, imgs, loc, loc_bdr): """ Args: imgs: each of img is [C, H, W] np.array, range: [0, 255] loc: string, e.g., 0_0, 0_1 ... """ self.max_x, self.max_y = loc_bdr x, y = loc self.loc2imgs[f'{x},{y}'] = imgs if len(self.loc2imgs) == self.max_x * self.max_y: return self.compute() def compute(self): img_inputs = [] for i in range(len(self.loc2imgs['0,0'])): img_full = [] for x in range(self.max_x): imgx = [] for y in range(self.max_y): imgx.append(self.loc2imgs[f'{x},{y}'][i]) img_full.append(np.concatenate(imgx, 2)) img_inputs.append(np.concatenate(img_full, 1)) self.clear() return self.eval_fn(*img_inputs) ########## # SSIM ########## def gaussian(window_size, sigma): gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)]) return gauss / gauss.sum() def create_window(window_size, channel): _1D_window = gaussian(window_size, 1.5).unsqueeze(1) _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous()) return window def _ssim(img1, img2, window, window_size, channel, size_average=True): mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1 * mu2 sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2 C1 = 0.01 ** 2 C2 = 0.03 ** 2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) if size_average: return ssim_map.mean() else: return ssim_map.mean(1).mean(1).mean(1) class SSIM(torch.nn.Module): def __init__(self, window_size=11, size_average=True): super(SSIM, self).__init__() self.window_size = window_size self.size_average = size_average self.channel = 1 self.window = create_window(window_size, self.channel) def forward(self, img1, img2): img1 = img1 * 0.5 + 0.5 img2 = img2 * 0.5 + 0.5 (_, channel, _, _) = img1.size() if channel == self.channel and self.window.data.type() == img1.data.type(): window = self.window else: window = create_window(self.window_size, channel) if img1.is_cuda: window = window.cuda(img1.get_device()) window = window.type_as(img1) self.window = window self.channel = channel return _ssim(img1, img2, window, self.window_size, channel, self.size_average) def ssim(img1, img2, window_size=11, size_average=True): (_, channel, _, _) = img1.size() window = create_window(window_size, channel) if img1.is_cuda: window = window.cuda(img1.get_device()) window = window.type_as(img1) return _ssim(img1, img2, window, window_size, channel, size_average) class VGGFeatureExtractor(nn.Module): def __init__(self, feature_layer=34, use_bn=False, use_input_norm=True): super(VGGFeatureExtractor, self).__init__() self.use_input_norm = use_input_norm if use_bn: model = torchvision.models.vgg19_bn(pretrained=True) else: model = torchvision.models.vgg19(pretrained=True) if self.use_input_norm: mean = torch.Tensor([0.485 - 1, 0.456 - 1, 0.406 - 1]).view(1, 3, 1, 1) # mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1) # [0.485 - 1, 0.456 - 1, 0.406 - 1] if input in range [-1, 1] std = torch.Tensor([0.229 * 2, 0.224 * 2, 0.225 * 2]).view(1, 3, 1, 1) # std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1) # [0.229 * 2, 0.224 * 2, 0.225 * 2] if input in range [-1, 1] self.register_buffer('mean', mean) self.register_buffer('std', std) self.features = nn.Sequential(*list(model.features.children())[:(feature_layer + 1)]) # No need to BP to variable for k, v in self.features.named_parameters(): v.requires_grad = False def forward(self, x): # Assume input range is [0, 1] if self.use_input_norm: x = (x - self.mean) / self.std output = self.features(x) return output class PerceptualLoss(nn.Module): def __init__(self): super(PerceptualLoss, self).__init__() loss_network = VGGFeatureExtractor() for param in loss_network.parameters(): param.requires_grad = False self.loss_network = loss_network self.l1_loss = nn.L1Loss() def forward(self, high_resolution, fake_high_resolution): if next(self.loss_network.parameters()).device != high_resolution.device: self.loss_network.to(high_resolution.device) self.loss_network.eval() perception_loss = self.l1_loss(self.loss_network(high_resolution), self.loss_network(fake_high_resolution)) return perception_loss