|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from dataclasses import dataclass
|
|
import tiktoken
|
|
|
|
@dataclass
|
|
class GPTConfig:
|
|
block_size: int = 256
|
|
vocab_size: int = 50257
|
|
n_layer: int = 8
|
|
n_head: int = 8
|
|
n_embd: int = 512
|
|
dropout: float = 0.05
|
|
|
|
class Block(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.ln_1 = nn.LayerNorm(config.n_embd)
|
|
self.attn = MultiHeadAttention(config)
|
|
self.ln_2 = nn.LayerNorm(config.n_embd)
|
|
self.mlp = FeedForward(config)
|
|
|
|
def forward(self, x):
|
|
x = x + self.attn(self.ln_1(x))
|
|
x = x + self.mlp(self.ln_2(x))
|
|
return x
|
|
|
|
class MultiHeadAttention(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.n_head = config.n_head
|
|
self.n_embd = config.n_embd
|
|
assert self.n_embd % self.n_head == 0
|
|
|
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
|
self.dropout = nn.Dropout(config.dropout)
|
|
|
|
def forward(self, x):
|
|
B, T, C = x.size()
|
|
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
|
|
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
|
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
|
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
|
|
|
att = (q @ k.transpose(-2, -1)) * (1.0 / torch.sqrt(torch.tensor(k.size(-1))))
|
|
att = F.softmax(att, dim=-1)
|
|
att = self.dropout(att)
|
|
y = att @ v
|
|
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
|
return self.c_proj(y)
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
|
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
|
self.dropout = nn.Dropout(config.dropout)
|
|
|
|
def forward(self, x):
|
|
x = F.gelu(self.c_fc(x))
|
|
x = self.dropout(x)
|
|
x = self.c_proj(x)
|
|
x = self.dropout(x)
|
|
return x
|
|
|
|
class GPT(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
self.transformer = nn.ModuleDict(
|
|
{
|
|
"wte": nn.Embedding(config.vocab_size, config.n_embd),
|
|
"wpe": nn.Embedding(config.block_size, config.n_embd),
|
|
"h": nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
|
"ln_f": nn.LayerNorm(config.n_embd),
|
|
}
|
|
)
|
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, module):
|
|
if isinstance(module, nn.Linear):
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
|
if module.bias is not None:
|
|
torch.nn.init.zeros_(module.bias)
|
|
elif isinstance(module, nn.Embedding):
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
|
|
|
def forward(self, idx, targets=None):
|
|
B, T = idx.size()
|
|
assert T <= self.config.block_size, f"Sequence length {T} exceeds block size {self.config.block_size}."
|
|
|
|
pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
|
|
tok_emb = self.transformer.wte(idx)
|
|
pos_emb = self.transformer.wpe(pos)
|
|
x = tok_emb + pos_emb
|
|
|
|
for block in self.transformer.h:
|
|
x = block(x)
|
|
|
|
x = self.transformer.ln_f(x)
|
|
logits = self.lm_head(x)
|
|
loss = None
|
|
if targets is not None:
|
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), label_smoothing=0.05)
|
|
return logits, loss
|
|
|
|
def load_model(model_path):
|
|
"""Load the trained model"""
|
|
try:
|
|
checkpoint = torch.load(model_path, map_location=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
|
|
|
|
|
config_dict = checkpoint['config']
|
|
if isinstance(config_dict, dict):
|
|
config = GPTConfig(**config_dict.__dict__)
|
|
else:
|
|
config = config_dict
|
|
|
|
model = GPT(config)
|
|
model.load_state_dict(checkpoint['model_state_dict'])
|
|
model.eval()
|
|
return model
|
|
except Exception as e:
|
|
print(f"Error loading model: {e}")
|
|
return None
|
|
|
|
def generate_text(model, prompt, max_new_tokens=50, temperature=0.8, top_k=40):
|
|
"""Generate text based on a prompt
|
|
Args:
|
|
model: The GPT model
|
|
prompt (str): Input text to continue from
|
|
max_new_tokens (int): Maximum number of tokens to generate
|
|
temperature (float): Higher values produce more diverse text (default: 0.8)
|
|
top_k (int): Number of highest probability tokens to consider (default: 40)
|
|
Returns:
|
|
str: Generated text including the original prompt
|
|
"""
|
|
try:
|
|
|
|
enc = tiktoken.get_encoding("gpt2")
|
|
input_ids = torch.tensor(enc.encode(prompt)).unsqueeze(0)
|
|
|
|
|
|
device = next(model.parameters()).device
|
|
input_ids = input_ids.to(device)
|
|
|
|
|
|
with torch.no_grad():
|
|
generated_tokens = []
|
|
for _ in range(max_new_tokens):
|
|
|
|
if input_ids.size(1) > model.config.block_size:
|
|
input_ids = input_ids[:, -model.config.block_size:]
|
|
|
|
|
|
logits, _ = model(input_ids)
|
|
logits = logits[:, -1, :]
|
|
|
|
|
|
logits = logits / temperature
|
|
|
|
|
|
if top_k > 0:
|
|
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
|
logits[logits < v[:, [-1]]] = float('-inf')
|
|
|
|
|
|
probs = F.softmax(logits, dim=-1)
|
|
next_token = torch.multinomial(probs, num_samples=1)
|
|
|
|
|
|
generated_tokens.append(next_token.item())
|
|
input_ids = torch.cat((input_ids, next_token), dim=1)
|
|
|
|
|
|
output_text = prompt + enc.decode(generated_tokens)
|
|
return output_text
|
|
|
|
except Exception as e:
|
|
print(f"Error during text generation: {str(e)}")
|
|
return prompt
|
|
|
|
|