File size: 6,992 Bytes
176f68f f77e017 176f68f f77e017 176f68f 9d9dde9 aa150c0 85c27c2 aa150c0 9d9dde9 b234d96 9d9dde9 176f68f f77e017 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass
import tiktoken
@dataclass
class GPTConfig:
block_size: int = 256
vocab_size: int = 50257
n_layer: int = 8
n_head: int = 8
n_embd: int = 512
dropout: float = 0.05
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = MultiHeadAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = FeedForward(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class MultiHeadAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.n_head = config.n_head
self.n_embd = config.n_embd
assert self.n_embd % self.n_head == 0
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
B, T, C = x.size()
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
att = (q @ k.transpose(-2, -1)) * (1.0 / torch.sqrt(torch.tensor(k.size(-1))))
att = F.softmax(att, dim=-1)
att = self.dropout(att)
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, C)
return self.c_proj(y)
class FeedForward(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
x = F.gelu(self.c_fc(x))
x = self.dropout(x)
x = self.c_proj(x)
x = self.dropout(x)
return x
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(
{
"wte": nn.Embedding(config.vocab_size, config.n_embd),
"wpe": nn.Embedding(config.block_size, config.n_embd),
"h": nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
"ln_f": nn.LayerNorm(config.n_embd),
}
)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.size()
assert T <= self.config.block_size, f"Sequence length {T} exceeds block size {self.config.block_size}."
pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
tok_emb = self.transformer.wte(idx)
pos_emb = self.transformer.wpe(pos)
x = tok_emb + pos_emb
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), label_smoothing=0.05)
return logits, loss
def load_model(model_path):
"""Load the trained model"""
try:
checkpoint = torch.load(model_path, map_location=torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
# Create config from the saved dictionary
config_dict = checkpoint['config']
if isinstance(config_dict, dict):
config = GPTConfig(**config_dict.__dict__) # Convert dataclass to dict
else:
config = config_dict # If config was already saved as GPTConfig instance
model = GPT(config)
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
return model
except Exception as e:
print(f"Error loading model: {e}")
return None
def generate_text(model, prompt, max_new_tokens=50, temperature=0.8, top_k=40):
"""Generate text based on a prompt
Args:
model: The GPT model
prompt (str): Input text to continue from
max_new_tokens (int): Maximum number of tokens to generate
temperature (float): Higher values produce more diverse text (default: 0.8)
top_k (int): Number of highest probability tokens to consider (default: 40)
Returns:
str: Generated text including the original prompt
"""
try:
# Initialize tokenizer and encode prompt
enc = tiktoken.get_encoding("gpt2")
input_ids = torch.tensor(enc.encode(prompt)).unsqueeze(0)
# Move to same device as model
device = next(model.parameters()).device
input_ids = input_ids.to(device)
# Generate tokens
with torch.no_grad():
generated_tokens = []
for _ in range(max_new_tokens):
# Truncate if sequence length exceeds block size
if input_ids.size(1) > model.config.block_size:
input_ids = input_ids[:, -model.config.block_size:]
# Get predictions from model
logits, _ = model(input_ids)
logits = logits[:, -1, :] # Get last token's logits
# Apply temperature scaling
logits = logits / temperature
# Apply top-k filtering
if top_k > 0:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = float('-inf')
# Sample next token
probs = F.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
# Append the token and continue generating
generated_tokens.append(next_token.item())
input_ids = torch.cat((input_ids, next_token), dim=1)
# Decode the generated tokens
output_text = prompt + enc.decode(generated_tokens)
return output_text
except Exception as e:
print(f"Error during text generation: {str(e)}")
return prompt
|