Tonic's picture
attempts lora adapter and streaming
757241b
raw
history blame
5.35 kB
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, pipeline
import torch
from threading import Thread
import gradio as gr
import spaces
import re
from peft import PeftModel
# Load the base model
try:
base_model = AutoModelForCausalLM.from_pretrained(
"openai/gpt-oss-20b",
torch_dtype="auto",
device_map="auto",
attn_implementation="kernel-community/vllm-flash-attention3"
)
tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b")
# Load the LoRA adapter
try:
model = PeftModel.from_pretrained(base_model, "Tonic/gpt-oss-20b-multilingual-reasoner")
print("✅ LoRA model loaded successfully!")
except Exception as lora_error:
print(f"⚠️ LoRA adapter failed to load: {lora_error}")
print("🔄 Falling back to base model...")
model = base_model
except Exception as e:
print(f"❌ Error loading model: {e}")
raise e
def format_messages(messages):
"""Format messages into a prompt string"""
formatted = ""
for message in messages:
role = message["role"]
content = message["content"]
if role == "system":
formatted += f"System: {content}\n"
elif role == "user":
formatted += f"User: {content}\n"
elif role == "assistant":
formatted += f"Assistant: {content}\n"
formatted += "Assistant: "
return formatted
def format_conversation_history(chat_history):
messages = []
for item in chat_history:
role = item["role"]
content = item["content"]
if isinstance(content, list):
content = content[0]["text"] if content and "text" in content[0] else str(content)
messages.append({"role": role, "content": content})
return messages
@spaces.GPU(duration=60)
def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
new_message = {"role": "user", "content": input_data}
system_message = [{"role": "system", "content": system_prompt}] if system_prompt else []
processed_history = format_conversation_history(chat_history)
messages = system_message + processed_history + [new_message]
# Format the prompt
prompt = format_messages(messages)
# Create streamer for proper streaming
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Prepare generation kwargs
generation_kwargs = {
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
"pad_token_id": tokenizer.eos_token_id,
"streamer": streamer,
"use_cache": True
}
# Tokenize input
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Start generation in a separate thread
thread = Thread(target=model.generate, kwargs={**inputs, **generation_kwargs})
thread.start()
# Stream the response
thinking = ""
final = ""
started_final = False
for chunk in streamer:
if not started_final:
if "assistantfinal" in chunk.lower():
split_parts = re.split(r'assistantfinal', chunk, maxsplit=1)
thinking += split_parts[0]
final += split_parts[1]
started_final = True
else:
thinking += chunk
else:
final += chunk
clean_thinking = re.sub(r'^analysis\s*', '', thinking).strip()
clean_final = final.strip()
formatted = f"<details open><summary>Click to view Thinking Process</summary>\n\n{clean_thinking}\n\n</details>\n\n{clean_final}"
yield formatted
demo = gr.ChatInterface(
fn=generate_response,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048),
gr.Textbox(
label="System Prompt",
value="You are a helpful assistant. Reasoning: medium",
lines=4,
placeholder="Change system prompt"
),
gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7),
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50),
gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0)
],
examples=[
[{"text": "Explain Newton laws clearly and concisely"}],
[{"text": "Write a Python function to calculate the Fibonacci sequence"}],
[{"text": "What are the benefits of open weight AI models"}],
],
cache_examples=False,
type="messages",
description="""
# 🙋🏻‍♂️Welcome to 🌟Tonic's gpt-oss-20b Multilingual Reasoner Demo !
Wait couple of seconds initially. You can adjust reasoning level in the system prompt like "Reasoning: high.
""",
fill_height=True,
textbox=gr.Textbox(
label="Query Input",
placeholder="Type your prompt"
),
stop_btn="Stop Generation",
multimodal=False,
theme=gr.themes.Soft()
)
if __name__ == "__main__":
demo.launch(share=True)