Spaces:
Runtime error
Runtime error
File size: 5,349 Bytes
757241b a4b21e5 6ce8b1e b0c4a3f a4b21e5 b0c4a3f 80434d8 b0c4a3f a4b21e5 757241b a4b21e5 dc6c5d6 a4b21e5 757241b a4b21e5 6ce8b1e b0c4a3f 757241b a4b21e5 b0c4a3f 757241b b0c4a3f 757241b b0c4a3f 757241b a4b21e5 14d377a a4b21e5 6ce8b1e 2870fe9 a4b21e5 b0c4a3f 6ce8b1e a4b21e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, pipeline
import torch
from threading import Thread
import gradio as gr
import spaces
import re
from peft import PeftModel
# Load the base model
try:
base_model = AutoModelForCausalLM.from_pretrained(
"openai/gpt-oss-20b",
torch_dtype="auto",
device_map="auto",
attn_implementation="kernel-community/vllm-flash-attention3"
)
tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b")
# Load the LoRA adapter
try:
model = PeftModel.from_pretrained(base_model, "Tonic/gpt-oss-20b-multilingual-reasoner")
print("✅ LoRA model loaded successfully!")
except Exception as lora_error:
print(f"⚠️ LoRA adapter failed to load: {lora_error}")
print("🔄 Falling back to base model...")
model = base_model
except Exception as e:
print(f"❌ Error loading model: {e}")
raise e
def format_messages(messages):
"""Format messages into a prompt string"""
formatted = ""
for message in messages:
role = message["role"]
content = message["content"]
if role == "system":
formatted += f"System: {content}\n"
elif role == "user":
formatted += f"User: {content}\n"
elif role == "assistant":
formatted += f"Assistant: {content}\n"
formatted += "Assistant: "
return formatted
def format_conversation_history(chat_history):
messages = []
for item in chat_history:
role = item["role"]
content = item["content"]
if isinstance(content, list):
content = content[0]["text"] if content and "text" in content[0] else str(content)
messages.append({"role": role, "content": content})
return messages
@spaces.GPU(duration=60)
def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
new_message = {"role": "user", "content": input_data}
system_message = [{"role": "system", "content": system_prompt}] if system_prompt else []
processed_history = format_conversation_history(chat_history)
messages = system_message + processed_history + [new_message]
# Format the prompt
prompt = format_messages(messages)
# Create streamer for proper streaming
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Prepare generation kwargs
generation_kwargs = {
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
"pad_token_id": tokenizer.eos_token_id,
"streamer": streamer,
"use_cache": True
}
# Tokenize input
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Start generation in a separate thread
thread = Thread(target=model.generate, kwargs={**inputs, **generation_kwargs})
thread.start()
# Stream the response
thinking = ""
final = ""
started_final = False
for chunk in streamer:
if not started_final:
if "assistantfinal" in chunk.lower():
split_parts = re.split(r'assistantfinal', chunk, maxsplit=1)
thinking += split_parts[0]
final += split_parts[1]
started_final = True
else:
thinking += chunk
else:
final += chunk
clean_thinking = re.sub(r'^analysis\s*', '', thinking).strip()
clean_final = final.strip()
formatted = f"<details open><summary>Click to view Thinking Process</summary>\n\n{clean_thinking}\n\n</details>\n\n{clean_final}"
yield formatted
demo = gr.ChatInterface(
fn=generate_response,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048),
gr.Textbox(
label="System Prompt",
value="You are a helpful assistant. Reasoning: medium",
lines=4,
placeholder="Change system prompt"
),
gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7),
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50),
gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0)
],
examples=[
[{"text": "Explain Newton laws clearly and concisely"}],
[{"text": "Write a Python function to calculate the Fibonacci sequence"}],
[{"text": "What are the benefits of open weight AI models"}],
],
cache_examples=False,
type="messages",
description="""
# 🙋🏻♂️Welcome to 🌟Tonic's gpt-oss-20b Multilingual Reasoner Demo !
Wait couple of seconds initially. You can adjust reasoning level in the system prompt like "Reasoning: high.
""",
fill_height=True,
textbox=gr.Textbox(
label="Query Input",
placeholder="Type your prompt"
),
stop_btn="Stop Generation",
multimodal=False,
theme=gr.themes.Soft()
)
if __name__ == "__main__":
demo.launch(share=True) |