Spaces:
Running
Running
import torch | |
import torch.nn.functional as F | |
import droid_backends | |
class CorrSampler(torch.autograd.Function): | |
def forward(ctx, volume, coords, radius): | |
ctx.save_for_backward(volume,coords) | |
ctx.radius = radius | |
corr, = droid_backends.corr_index_forward(volume, coords, radius) | |
return corr | |
def backward(ctx, grad_output): | |
volume, coords = ctx.saved_tensors | |
grad_output = grad_output.contiguous() | |
grad_volume, = droid_backends.corr_index_backward(volume, coords, grad_output, ctx.radius) | |
return grad_volume, None, None | |
class CorrBlock: | |
def __init__(self, fmap1, fmap2, num_levels=4, radius=3): | |
self.num_levels = num_levels | |
self.radius = radius | |
self.corr_pyramid = [] | |
# all pairs correlation | |
corr = CorrBlock.corr(fmap1, fmap2) | |
batch, num, h1, w1, h2, w2 = corr.shape | |
corr = corr.reshape(batch*num*h1*w1, 1, h2, w2) | |
for i in range(self.num_levels): | |
self.corr_pyramid.append( | |
corr.view(batch*num, h1, w1, h2//2**i, w2//2**i)) | |
corr = F.avg_pool2d(corr, 2, stride=2) | |
def __call__(self, coords): | |
out_pyramid = [] | |
batch, num, ht, wd, _ = coords.shape | |
coords = coords.permute(0,1,4,2,3) | |
coords = coords.contiguous().view(batch*num, 2, ht, wd) | |
for i in range(self.num_levels): | |
corr = CorrSampler.apply(self.corr_pyramid[i], coords/2**i, self.radius) | |
out_pyramid.append(corr.view(batch, num, -1, ht, wd)) | |
return torch.cat(out_pyramid, dim=2) | |
def cat(self, other): | |
for i in range(self.num_levels): | |
self.corr_pyramid[i] = torch.cat([self.corr_pyramid[i], other.corr_pyramid[i]], 0) | |
return self | |
def __getitem__(self, index): | |
for i in range(self.num_levels): | |
self.corr_pyramid[i] = self.corr_pyramid[i][index] | |
return self | |
def corr(fmap1, fmap2): | |
""" all-pairs correlation """ | |
batch, num, dim, ht, wd = fmap1.shape | |
fmap1 = fmap1.reshape(batch*num, dim, ht*wd) / 4.0 | |
fmap2 = fmap2.reshape(batch*num, dim, ht*wd) / 4.0 | |
corr = torch.matmul(fmap1.transpose(1,2), fmap2) | |
return corr.view(batch, num, ht, wd, ht, wd) | |
class CorrLayer(torch.autograd.Function): | |
def forward(ctx, fmap1, fmap2, coords, r): | |
ctx.r = r | |
ctx.save_for_backward(fmap1, fmap2, coords) | |
corr, = droid_backends.altcorr_forward(fmap1, fmap2, coords, ctx.r) | |
return corr | |
def backward(ctx, grad_corr): | |
fmap1, fmap2, coords = ctx.saved_tensors | |
grad_corr = grad_corr.contiguous() | |
fmap1_grad, fmap2_grad, coords_grad = \ | |
droid_backends.altcorr_backward(fmap1, fmap2, coords, grad_corr, ctx.r) | |
return fmap1_grad, fmap2_grad, coords_grad, None | |
class AltCorrBlock: | |
def __init__(self, fmaps, num_levels=4, radius=3): | |
self.num_levels = num_levels | |
self.radius = radius | |
B, N, C, H, W = fmaps.shape | |
fmaps = fmaps.view(B*N, C, H, W) / 4.0 | |
self.pyramid = [] | |
for i in range(self.num_levels): | |
sz = (B, N, H//2**i, W//2**i, C) | |
fmap_lvl = fmaps.permute(0, 2, 3, 1).contiguous() | |
self.pyramid.append(fmap_lvl.view(*sz)) | |
fmaps = F.avg_pool2d(fmaps, 2, stride=2) | |
def corr_fn(self, coords, ii, jj): | |
B, N, H, W, S, _ = coords.shape | |
coords = coords.permute(0, 1, 4, 2, 3, 5) | |
corr_list = [] | |
for i in range(self.num_levels): | |
r = self.radius | |
fmap1_i = self.pyramid[0][:, ii] | |
fmap2_i = self.pyramid[i][:, jj] | |
coords_i = (coords / 2**i).reshape(B*N, S, H, W, 2).contiguous() | |
fmap1_i = fmap1_i.reshape((B*N,) + fmap1_i.shape[2:]) | |
fmap2_i = fmap2_i.reshape((B*N,) + fmap2_i.shape[2:]) | |
corr = CorrLayer.apply(fmap1_i.float(), fmap2_i.float(), coords_i, self.radius) | |
corr = corr.view(B, N, S, -1, H, W).permute(0, 1, 3, 4, 5, 2) | |
corr_list.append(corr) | |
corr = torch.cat(corr_list, dim=2) | |
return corr | |
def __call__(self, coords, ii, jj): | |
squeeze_output = False | |
if len(coords.shape) == 5: | |
coords = coords.unsqueeze(dim=-2) | |
squeeze_output = True | |
corr = self.corr_fn(coords, ii, jj) | |
if squeeze_output: | |
corr = corr.squeeze(dim=-1) | |
return corr.contiguous() | |