ThunderVVV's picture
add thirdparty
b7eedf7
import torch
import torch.nn.functional as F
import droid_backends
class CorrSampler(torch.autograd.Function):
@staticmethod
def forward(ctx, volume, coords, radius):
ctx.save_for_backward(volume,coords)
ctx.radius = radius
corr, = droid_backends.corr_index_forward(volume, coords, radius)
return corr
@staticmethod
def backward(ctx, grad_output):
volume, coords = ctx.saved_tensors
grad_output = grad_output.contiguous()
grad_volume, = droid_backends.corr_index_backward(volume, coords, grad_output, ctx.radius)
return grad_volume, None, None
class CorrBlock:
def __init__(self, fmap1, fmap2, num_levels=4, radius=3):
self.num_levels = num_levels
self.radius = radius
self.corr_pyramid = []
# all pairs correlation
corr = CorrBlock.corr(fmap1, fmap2)
batch, num, h1, w1, h2, w2 = corr.shape
corr = corr.reshape(batch*num*h1*w1, 1, h2, w2)
for i in range(self.num_levels):
self.corr_pyramid.append(
corr.view(batch*num, h1, w1, h2//2**i, w2//2**i))
corr = F.avg_pool2d(corr, 2, stride=2)
def __call__(self, coords):
out_pyramid = []
batch, num, ht, wd, _ = coords.shape
coords = coords.permute(0,1,4,2,3)
coords = coords.contiguous().view(batch*num, 2, ht, wd)
for i in range(self.num_levels):
corr = CorrSampler.apply(self.corr_pyramid[i], coords/2**i, self.radius)
out_pyramid.append(corr.view(batch, num, -1, ht, wd))
return torch.cat(out_pyramid, dim=2)
def cat(self, other):
for i in range(self.num_levels):
self.corr_pyramid[i] = torch.cat([self.corr_pyramid[i], other.corr_pyramid[i]], 0)
return self
def __getitem__(self, index):
for i in range(self.num_levels):
self.corr_pyramid[i] = self.corr_pyramid[i][index]
return self
@staticmethod
def corr(fmap1, fmap2):
""" all-pairs correlation """
batch, num, dim, ht, wd = fmap1.shape
fmap1 = fmap1.reshape(batch*num, dim, ht*wd) / 4.0
fmap2 = fmap2.reshape(batch*num, dim, ht*wd) / 4.0
corr = torch.matmul(fmap1.transpose(1,2), fmap2)
return corr.view(batch, num, ht, wd, ht, wd)
class CorrLayer(torch.autograd.Function):
@staticmethod
def forward(ctx, fmap1, fmap2, coords, r):
ctx.r = r
ctx.save_for_backward(fmap1, fmap2, coords)
corr, = droid_backends.altcorr_forward(fmap1, fmap2, coords, ctx.r)
return corr
@staticmethod
def backward(ctx, grad_corr):
fmap1, fmap2, coords = ctx.saved_tensors
grad_corr = grad_corr.contiguous()
fmap1_grad, fmap2_grad, coords_grad = \
droid_backends.altcorr_backward(fmap1, fmap2, coords, grad_corr, ctx.r)
return fmap1_grad, fmap2_grad, coords_grad, None
class AltCorrBlock:
def __init__(self, fmaps, num_levels=4, radius=3):
self.num_levels = num_levels
self.radius = radius
B, N, C, H, W = fmaps.shape
fmaps = fmaps.view(B*N, C, H, W) / 4.0
self.pyramid = []
for i in range(self.num_levels):
sz = (B, N, H//2**i, W//2**i, C)
fmap_lvl = fmaps.permute(0, 2, 3, 1).contiguous()
self.pyramid.append(fmap_lvl.view(*sz))
fmaps = F.avg_pool2d(fmaps, 2, stride=2)
def corr_fn(self, coords, ii, jj):
B, N, H, W, S, _ = coords.shape
coords = coords.permute(0, 1, 4, 2, 3, 5)
corr_list = []
for i in range(self.num_levels):
r = self.radius
fmap1_i = self.pyramid[0][:, ii]
fmap2_i = self.pyramid[i][:, jj]
coords_i = (coords / 2**i).reshape(B*N, S, H, W, 2).contiguous()
fmap1_i = fmap1_i.reshape((B*N,) + fmap1_i.shape[2:])
fmap2_i = fmap2_i.reshape((B*N,) + fmap2_i.shape[2:])
corr = CorrLayer.apply(fmap1_i.float(), fmap2_i.float(), coords_i, self.radius)
corr = corr.view(B, N, S, -1, H, W).permute(0, 1, 3, 4, 5, 2)
corr_list.append(corr)
corr = torch.cat(corr_list, dim=2)
return corr
def __call__(self, coords, ii, jj):
squeeze_output = False
if len(coords.shape) == 5:
coords = coords.unsqueeze(dim=-2)
squeeze_output = True
corr = self.corr_fn(coords, ii, jj)
if squeeze_output:
corr = corr.squeeze(dim=-1)
return corr.contiguous()