import torch import torch.nn.functional as F import droid_backends class CorrSampler(torch.autograd.Function): @staticmethod def forward(ctx, volume, coords, radius): ctx.save_for_backward(volume,coords) ctx.radius = radius corr, = droid_backends.corr_index_forward(volume, coords, radius) return corr @staticmethod def backward(ctx, grad_output): volume, coords = ctx.saved_tensors grad_output = grad_output.contiguous() grad_volume, = droid_backends.corr_index_backward(volume, coords, grad_output, ctx.radius) return grad_volume, None, None class CorrBlock: def __init__(self, fmap1, fmap2, num_levels=4, radius=3): self.num_levels = num_levels self.radius = radius self.corr_pyramid = [] # all pairs correlation corr = CorrBlock.corr(fmap1, fmap2) batch, num, h1, w1, h2, w2 = corr.shape corr = corr.reshape(batch*num*h1*w1, 1, h2, w2) for i in range(self.num_levels): self.corr_pyramid.append( corr.view(batch*num, h1, w1, h2//2**i, w2//2**i)) corr = F.avg_pool2d(corr, 2, stride=2) def __call__(self, coords): out_pyramid = [] batch, num, ht, wd, _ = coords.shape coords = coords.permute(0,1,4,2,3) coords = coords.contiguous().view(batch*num, 2, ht, wd) for i in range(self.num_levels): corr = CorrSampler.apply(self.corr_pyramid[i], coords/2**i, self.radius) out_pyramid.append(corr.view(batch, num, -1, ht, wd)) return torch.cat(out_pyramid, dim=2) def cat(self, other): for i in range(self.num_levels): self.corr_pyramid[i] = torch.cat([self.corr_pyramid[i], other.corr_pyramid[i]], 0) return self def __getitem__(self, index): for i in range(self.num_levels): self.corr_pyramid[i] = self.corr_pyramid[i][index] return self @staticmethod def corr(fmap1, fmap2): """ all-pairs correlation """ batch, num, dim, ht, wd = fmap1.shape fmap1 = fmap1.reshape(batch*num, dim, ht*wd) / 4.0 fmap2 = fmap2.reshape(batch*num, dim, ht*wd) / 4.0 corr = torch.matmul(fmap1.transpose(1,2), fmap2) return corr.view(batch, num, ht, wd, ht, wd) class CorrLayer(torch.autograd.Function): @staticmethod def forward(ctx, fmap1, fmap2, coords, r): ctx.r = r ctx.save_for_backward(fmap1, fmap2, coords) corr, = droid_backends.altcorr_forward(fmap1, fmap2, coords, ctx.r) return corr @staticmethod def backward(ctx, grad_corr): fmap1, fmap2, coords = ctx.saved_tensors grad_corr = grad_corr.contiguous() fmap1_grad, fmap2_grad, coords_grad = \ droid_backends.altcorr_backward(fmap1, fmap2, coords, grad_corr, ctx.r) return fmap1_grad, fmap2_grad, coords_grad, None class AltCorrBlock: def __init__(self, fmaps, num_levels=4, radius=3): self.num_levels = num_levels self.radius = radius B, N, C, H, W = fmaps.shape fmaps = fmaps.view(B*N, C, H, W) / 4.0 self.pyramid = [] for i in range(self.num_levels): sz = (B, N, H//2**i, W//2**i, C) fmap_lvl = fmaps.permute(0, 2, 3, 1).contiguous() self.pyramid.append(fmap_lvl.view(*sz)) fmaps = F.avg_pool2d(fmaps, 2, stride=2) def corr_fn(self, coords, ii, jj): B, N, H, W, S, _ = coords.shape coords = coords.permute(0, 1, 4, 2, 3, 5) corr_list = [] for i in range(self.num_levels): r = self.radius fmap1_i = self.pyramid[0][:, ii] fmap2_i = self.pyramid[i][:, jj] coords_i = (coords / 2**i).reshape(B*N, S, H, W, 2).contiguous() fmap1_i = fmap1_i.reshape((B*N,) + fmap1_i.shape[2:]) fmap2_i = fmap2_i.reshape((B*N,) + fmap2_i.shape[2:]) corr = CorrLayer.apply(fmap1_i.float(), fmap2_i.float(), coords_i, self.radius) corr = corr.view(B, N, S, -1, H, W).permute(0, 1, 3, 4, 5, 2) corr_list.append(corr) corr = torch.cat(corr_list, dim=2) return corr def __call__(self, coords, ii, jj): squeeze_output = False if len(coords.shape) == 5: coords = coords.unsqueeze(dim=-2) squeeze_output = True corr = self.corr_fn(coords, ii, jj) if squeeze_output: corr = corr.squeeze(dim=-1) return corr.contiguous()