File size: 4,699 Bytes
a621f88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import re
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from langchain.memory import ConversationBufferMemory
import torch, unsloth, triton

# ─── LOAD MODEL & TOKENIZER ─────────────────────────────────────────────
# Adjust paths or HF repo as needed
FINETUNED_DIR = "/content/drive/MyDrive/bitext-qlora-tinyllama"
bnb_cfg = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_use_double_quant=True,
    bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(FINETUNED_DIR, use_fast=False)
tokenizer.pad_token_id    = tokenizer.eos_token_id
tokenizer.padding_side    = "left"
tokenizer.truncation_side = "right"
model = AutoModelForCausalLM.from_pretrained(
    FINETUNED_DIR,
    quantization_config=bnb_cfg,
    device_map="auto",
    trust_remote_code=True
)

# ─── MEMORY & PIPELINE ─────────────────────────────────────────────────
memory         = ConversationBufferMemory(memory_key="user_lines",
                                          human_prefix="User",
                                          ai_prefix="Assistant",
                                          return_messages=False)
stored_order   = None
pending_intent = None

chat_pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    trust_remote_code=True,
    return_full_text=False
)

# ─── HELPERS & HANDLERS ────────────────────────────────────────────────
order_re = re.compile(r"#(\\d{1,10})")
def extract_order(text):
    m = order_re.search(text)
    return m.group(1) if m else None

def handle_status(o):
    return f"Order #{o} is in transit and should arrive in 3–5 business days."
def handle_eta(o):
    return (f"Delivery for order #{o} typically takes 3–5 days; "
            f"you can track it at https://track.example.com/{o}")
def handle_track(o):
    return f"Track order #{o} here: https://track.example.com/{o}"
def handle_link(o):
    return f"Here’s the latest tracking link for order #{o}: https://track.example.com/{o}"
def handle_return_policy(_=None):
    return ("Our return policy allows returns of unused items in their original packaging "
            "within 30 days of receipt. Would you like me to connect you with a human agent?")
def handle_gratitude(_=None):
    return "You’re welcome! Is there anything else I can help with?"
def handle_escalation(_=None):
    return "I’m sorry, I don’t have that information. Would you like me to connect you with a human agent?"

# ─── MAIN CHAT FUNCTION ────────────────────────────────────────────────
def chat_with_memory(user_input: str) -> str:
    global stored_order, pending_intent

    memory.save_context({"input": user_input}, {"output": ""})
    new_o = extract_order(user_input)
    if new_o:
        stored_order = new_o
        if pending_intent in ("status","eta","track","link"):
            fn = {"status":handle_status,"eta":handle_eta,
                  "track":handle_track,"link":handle_link}[pending_intent]
            reply = fn(stored_order)
            pending_intent = None
            memory.save_context({"input": user_input}, {"output": reply})
            return reply

    ui = user_input.lower().strip()
    if any(tok in ui for tok in ["thank you","thanks","thx"]):
        reply = handle_gratitude()
    elif "return" in ui:
        reply = handle_return_policy()
    elif any(k in ui for k in ["status","where is my order","check status"]):
        intent = "status"
    elif any(k in ui for k in ["how long","eta","delivery time"]):
        intent = "eta"
    elif any(k in ui for k in ["how can i track","track my order","where is my package"]):
        intent = "track"
    elif "tracking link" in ui or "resend" in ui:
        intent = "link"
    else:
        intent = "fallback"

    if intent in ("status","eta","track","link"):
        if not stored_order:
            pending_intent = intent
            reply = "Sureβ€”what’s your order number (e.g., #12345)?"
        else:
            reply = {"status":handle_status,"eta":handle_eta,
                     "track":handle_track,"link":handle_link}[intent](stored_order)
    else:
        reply = handle_escalation()

    memory.save_context({"input": user_input}, {"output": reply})
    return reply