BasilTh commited on
Commit
a621f88
Β·
1 Parent(s): 7599510

Deploy latest SLM customer-support chatbot

Browse files
Files changed (3) hide show
  1. app.py +6 -60
  2. module.py +108 -0
  3. requirements.txt +10 -1
app.py CHANGED
@@ -1,64 +1,10 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
 
 
 
 
 
 
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ from module import chat_with_memory
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
+ with gr.Blocks() as demo:
5
+ chatbot = gr.Chatbot()
6
+ txt = gr.Textbox(placeholder="Type your message and press ⏎")
7
+ txt.submit(lambda msg, hist: (None, hist + [[msg, chat_with_memory(msg)]]),
8
+ [txt, chatbot], [txt, chatbot])
9
  if __name__ == "__main__":
10
  demo.launch()
module.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
3
+ from langchain.memory import ConversationBufferMemory
4
+ import torch, unsloth, triton
5
+
6
+ # ─── LOAD MODEL & TOKENIZER ─────────────────────────────────────────────
7
+ # Adjust paths or HF repo as needed
8
+ FINETUNED_DIR = "/content/drive/MyDrive/bitext-qlora-tinyllama"
9
+ bnb_cfg = BitsAndBytesConfig(
10
+ load_in_4bit=True,
11
+ bnb_4bit_quant_type="nf4",
12
+ bnb_4bit_use_double_quant=True,
13
+ bnb_4bit_compute_dtype=torch.bfloat16
14
+ )
15
+ tokenizer = AutoTokenizer.from_pretrained(FINETUNED_DIR, use_fast=False)
16
+ tokenizer.pad_token_id = tokenizer.eos_token_id
17
+ tokenizer.padding_side = "left"
18
+ tokenizer.truncation_side = "right"
19
+ model = AutoModelForCausalLM.from_pretrained(
20
+ FINETUNED_DIR,
21
+ quantization_config=bnb_cfg,
22
+ device_map="auto",
23
+ trust_remote_code=True
24
+ )
25
+
26
+ # ─── MEMORY & PIPELINE ─────────────────────────────────────────────────
27
+ memory = ConversationBufferMemory(memory_key="user_lines",
28
+ human_prefix="User",
29
+ ai_prefix="Assistant",
30
+ return_messages=False)
31
+ stored_order = None
32
+ pending_intent = None
33
+
34
+ chat_pipe = pipeline(
35
+ "text-generation",
36
+ model=model,
37
+ tokenizer=tokenizer,
38
+ trust_remote_code=True,
39
+ return_full_text=False
40
+ )
41
+
42
+ # ─── HELPERS & HANDLERS ────────────────────────────────────────────────
43
+ order_re = re.compile(r"#(\\d{1,10})")
44
+ def extract_order(text):
45
+ m = order_re.search(text)
46
+ return m.group(1) if m else None
47
+
48
+ def handle_status(o):
49
+ return f"Order #{o} is in transit and should arrive in 3–5 business days."
50
+ def handle_eta(o):
51
+ return (f"Delivery for order #{o} typically takes 3–5 days; "
52
+ f"you can track it at https://track.example.com/{o}")
53
+ def handle_track(o):
54
+ return f"Track order #{o} here: https://track.example.com/{o}"
55
+ def handle_link(o):
56
+ return f"Here’s the latest tracking link for order #{o}: https://track.example.com/{o}"
57
+ def handle_return_policy(_=None):
58
+ return ("Our return policy allows returns of unused items in their original packaging "
59
+ "within 30 days of receipt. Would you like me to connect you with a human agent?")
60
+ def handle_gratitude(_=None):
61
+ return "You’re welcome! Is there anything else I can help with?"
62
+ def handle_escalation(_=None):
63
+ return "I’m sorry, I don’t have that information. Would you like me to connect you with a human agent?"
64
+
65
+ # ─── MAIN CHAT FUNCTION ────────────────────────────────────────────────
66
+ def chat_with_memory(user_input: str) -> str:
67
+ global stored_order, pending_intent
68
+
69
+ memory.save_context({"input": user_input}, {"output": ""})
70
+ new_o = extract_order(user_input)
71
+ if new_o:
72
+ stored_order = new_o
73
+ if pending_intent in ("status","eta","track","link"):
74
+ fn = {"status":handle_status,"eta":handle_eta,
75
+ "track":handle_track,"link":handle_link}[pending_intent]
76
+ reply = fn(stored_order)
77
+ pending_intent = None
78
+ memory.save_context({"input": user_input}, {"output": reply})
79
+ return reply
80
+
81
+ ui = user_input.lower().strip()
82
+ if any(tok in ui for tok in ["thank you","thanks","thx"]):
83
+ reply = handle_gratitude()
84
+ elif "return" in ui:
85
+ reply = handle_return_policy()
86
+ elif any(k in ui for k in ["status","where is my order","check status"]):
87
+ intent = "status"
88
+ elif any(k in ui for k in ["how long","eta","delivery time"]):
89
+ intent = "eta"
90
+ elif any(k in ui for k in ["how can i track","track my order","where is my package"]):
91
+ intent = "track"
92
+ elif "tracking link" in ui or "resend" in ui:
93
+ intent = "link"
94
+ else:
95
+ intent = "fallback"
96
+
97
+ if intent in ("status","eta","track","link"):
98
+ if not stored_order:
99
+ pending_intent = intent
100
+ reply = "Sureβ€”what’s your order number (e.g., #12345)?"
101
+ else:
102
+ reply = {"status":handle_status,"eta":handle_eta,
103
+ "track":handle_track,"link":handle_link}[intent](stored_order)
104
+ else:
105
+ reply = handle_escalation()
106
+
107
+ memory.save_context({"input": user_input}, {"output": reply})
108
+ return reply
requirements.txt CHANGED
@@ -1 +1,10 @@
1
- huggingface_hub==0.25.2
 
 
 
 
 
 
 
 
 
 
1
+ gradio
2
+ transformers
3
+ bitsandbytes
4
+ accelerate
5
+ xformers
6
+ sentencepiece
7
+ langchain
8
+ unsloth
9
+ unsloth_zoo
10
+ huggingface_hub