|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased') |
|
model = AutoModelForSequenceClassification.from_pretrained('distilbert-base-uncased', num_labels=2) |
|
|
|
def predict_sentiment(input_text): |
|
|
|
inputs = tokenizer(input_text, return_tensors='pt') |
|
|
|
|
|
outputs = model(**inputs) |
|
probabilities = outputs[0][0].detach().numpy() |
|
labels = ['Negative', 'Positive'] |
|
predicted_label = labels[probabilities.argmax()] |
|
|
|
return {"Text": input_text, "Sentiment": predicted_label} |
|
|
|
iface = gr.Interface(predict_sentiment, input_type="text", output_types=["text"], |
|
input_label="Enter Text", output_label="Predicted Sentiment") |
|
|
|
iface.launch() |