import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification # Load pre-trained tokenizer and model tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased') model = AutoModelForSequenceClassification.from_pretrained('distilbert-base-uncased', num_labels=2) def predict_sentiment(input_text): # Tokenization inputs = tokenizer(input_text, return_tensors='pt') # Prediction outputs = model(**inputs) probabilities = outputs[0][0].detach().numpy() labels = ['Negative', 'Positive'] predicted_label = labels[probabilities.argmax()] return {"Text": input_text, "Sentiment": predicted_label} iface = gr.Interface(predict_sentiment, input_type="text", output_types=["text"], input_label="Enter Text", output_label="Predicted Sentiment") iface.launch()