Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import json | |
import logging | |
import torch | |
from PIL import Image | |
import spaces | |
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, FluxImg2ImgPipeline | |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images | |
from diffusers.utils import load_image | |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download | |
import copy | |
import random | |
import time | |
selected_lora_index = None | |
# Load LoRAs from JSON file | |
with open('loras.json', 'r') as f: | |
loras = json.load(f) | |
# Initialize the base model | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
base_model = "black-forest-labs/FLUX.1-dev" | |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) | |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device) | |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device) | |
pipe_i2i = FluxImg2ImgPipeline.from_pretrained( | |
base_model, | |
vae=good_vae, | |
transformer=pipe.transformer, | |
text_encoder=pipe.text_encoder, | |
tokenizer=pipe.tokenizer, | |
text_encoder_2=pipe.text_encoder_2, | |
tokenizer_2=pipe.tokenizer_2, | |
torch_dtype=dtype | |
) | |
MAX_SEED = 2**32-1 | |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) | |
class calculateDuration: | |
def __init__(self, activity_name=""): | |
self.activity_name = activity_name | |
def __enter__(self): | |
self.start_time = time.time() | |
return self | |
def __exit__(self, exc_type, exc_value, traceback): | |
self.end_time = time.time() | |
self.elapsed_time = self.end_time - self.start_time | |
if self.activity_name: | |
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") | |
else: | |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds") | |
def update_selection(evt: gr.SelectData, width, height): | |
global selected_lora_index | |
selected_lora_index = evt.index | |
selected_lora = loras[evt.index] | |
default_prompt = selected_lora.get('default_prompt', '') | |
new_placeholder = f"{selected_lora['trigger_word']} {default_prompt}" | |
lora_repo = selected_lora["repo"] | |
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" | |
if "aspect" in selected_lora: | |
if selected_lora["aspect"] == "portrait": | |
width = 768 | |
height = 1024 | |
elif selected_lora["aspect"] == "landscape": | |
width = 1024 | |
height = 768 | |
else: | |
width = 1024 | |
height = 1024 | |
return ( | |
gr.update(value=new_placeholder), | |
updated_text, | |
width, | |
height, | |
gr.update(interactive=True) # Enable the Generate button | |
) | |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress): | |
pipe.to("cuda") | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
with calculateDuration("Generating image"): | |
# Generate image | |
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( | |
prompt=prompt_mash, | |
num_inference_steps=steps, | |
guidance_scale=cfg_scale, | |
width=width, | |
height=height, | |
generator=generator, | |
joint_attention_kwargs={"scale": lora_scale}, | |
output_type="pil", | |
good_vae=good_vae, | |
): | |
yield img | |
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): | |
global selected_lora_index | |
if selected_lora_index is None: | |
raise gr.Error("You must select a LoRA before proceeding.") | |
selected_lora = loras[selected_lora_index] | |
lora_path = selected_lora["repo"] | |
trigger_word = selected_lora["trigger_word"] | |
if trigger_word: | |
if "trigger_position" in selected_lora: | |
if selected_lora["trigger_position"] == "prepend": | |
prompt_mash = f"{trigger_word} {prompt}" | |
else: | |
prompt_mash = f"{prompt} {trigger_word}" | |
else: | |
prompt_mash = f"{trigger_word} {prompt}" | |
else: | |
prompt_mash = prompt | |
with calculateDuration("Unloading LoRA"): | |
pipe.unload_lora_weights() | |
# Load LoRA weights | |
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"): | |
if "weights" in selected_lora: | |
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"]) | |
else: | |
pipe.load_lora_weights(lora_path) | |
# Set random seed for reproducibility | |
with calculateDuration("Randomizing seed"): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress) | |
# Consume the generator to get the final image | |
final_image = None | |
step_counter = 0 | |
for image in image_generator: | |
step_counter += 1 | |
final_image = image | |
progress_bar = f'Generating image... Step {step_counter}/{steps}' | |
yield image, seed, gr.update(visible=True, value=progress_bar) | |
yield final_image, seed, gr.update(visible=False) | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Awaken Ones' Lora Previews") | |
gr.Markdown("Select a LoRA model from the gallery below to get started!") | |
with gr.Row(): | |
gallery = gr.Gallery( | |
value=[lora["image"] for lora in loras], | |
label="LoRA Gallery", | |
show_label=False, | |
elem_id="gallery", | |
columns=[5], | |
rows=[3], | |
object_fit="contain", | |
height="auto", | |
) | |
with gr.Row(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
placeholder="Type your prompt here...", | |
show_label=True, | |
) | |
with gr.Row(): | |
generate = gr.Button("Generate", variant="primary", interactive=False) | |
cancel = gr.Button("Cancel") | |
with gr.Row(): | |
with gr.Column(scale=4): | |
result = gr.Image(label="Result", show_label=False, elem_id="result") | |
with gr.Column(scale=1): | |
seed_output = gr.Number(label="Seed", interactive=False) | |
with gr.Row(): | |
with gr.Column(): | |
steps = gr.Slider(minimum=1, maximum=100, value=25, step=1, label="Steps") | |
cfg_scale = gr.Slider(minimum=1, maximum=20, value=3.5, step=0.1, label="CFG Scale") | |
lora_scale = gr.Slider(minimum=0, maximum=2, value=1, step=0.1, label="LoRA Scale") | |
with gr.Column(): | |
width = gr.Slider(minimum=256, maximum=1024, value=512, step=64, label="Width") | |
height = gr.Slider(minimum=256, maximum=1024, value=512, step=64, label="Height") | |
with gr.Row(): | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
seed_input = gr.Number(label="Seed", value=0, interactive=True, visible=False) | |
selected_lora = gr.Markdown("### No LoRA selected") | |
progress_bar = gr.Markdown(visible=False) | |
# Event handlers | |
gallery.select(update_selection, [width, height], [prompt, selected_lora, width, height, generate]) | |
randomize_seed.change(lambda x: gr.update(visible=not x), randomize_seed, seed_input) | |
generate_event = generate.click(run_lora, inputs=[prompt, cfg_scale, steps, randomize_seed, seed_input, width, height, lora_scale], outputs=[result, seed_output, progress_bar]) | |
cancel.click(lambda: None, None, None, cancels=[generate_event]) | |
demo.queue().launch() |