TheAwakenOne's picture
Updates
9f8a91d
raw
history blame
7.78 kB
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, FluxImg2ImgPipeline
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time
selected_lora_index = None
# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
loras = json.load(f)
# Initialize the base model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
pipe_i2i = FluxImg2ImgPipeline.from_pretrained(
base_model,
vae=good_vae,
transformer=pipe.transformer,
text_encoder=pipe.text_encoder,
tokenizer=pipe.tokenizer,
text_encoder_2=pipe.text_encoder_2,
tokenizer_2=pipe.tokenizer_2,
torch_dtype=dtype
)
MAX_SEED = 2**32-1
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def update_selection(evt: gr.SelectData, width, height):
global selected_lora_index
selected_lora_index = evt.index
selected_lora = loras[evt.index]
default_prompt = selected_lora.get('default_prompt', '')
new_placeholder = f"{selected_lora['trigger_word']} {default_prompt}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
width = 768
height = 1024
elif selected_lora["aspect"] == "landscape":
width = 1024
height = 768
else:
width = 1024
height = 1024
return (
gr.update(value=new_placeholder),
updated_text,
width,
height,
gr.update(interactive=True) # Enable the Generate button
)
@spaces.GPU(duration=70)
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("Generating image"):
# Generate image
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt_mash,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
output_type="pil",
good_vae=good_vae,
):
yield img
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
global selected_lora_index
if selected_lora_index is None:
raise gr.Error("You must select a LoRA before proceeding.")
selected_lora = loras[selected_lora_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
if trigger_word:
if "trigger_position" in selected_lora:
if selected_lora["trigger_position"] == "prepend":
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = f"{prompt} {trigger_word}"
else:
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = prompt
with calculateDuration("Unloading LoRA"):
pipe.unload_lora_weights()
# Load LoRA weights
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
if "weights" in selected_lora:
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
else:
pipe.load_lora_weights(lora_path)
# Set random seed for reproducibility
with calculateDuration("Randomizing seed"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
# Consume the generator to get the final image
final_image = None
step_counter = 0
for image in image_generator:
step_counter += 1
final_image = image
progress_bar = f'Generating image... Step {step_counter}/{steps}'
yield image, seed, gr.update(visible=True, value=progress_bar)
yield final_image, seed, gr.update(visible=False)
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Awaken Ones' Lora Previews")
gr.Markdown("Select a LoRA model from the gallery below to get started!")
with gr.Row():
gallery = gr.Gallery(
value=[lora["image"] for lora in loras],
label="LoRA Gallery",
show_label=False,
elem_id="gallery",
columns=[5],
rows=[3],
object_fit="contain",
height="auto",
)
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
placeholder="Type your prompt here...",
show_label=True,
)
with gr.Row():
generate = gr.Button("Generate", variant="primary", interactive=False)
cancel = gr.Button("Cancel")
with gr.Row():
with gr.Column(scale=4):
result = gr.Image(label="Result", show_label=False, elem_id="result")
with gr.Column(scale=1):
seed_output = gr.Number(label="Seed", interactive=False)
with gr.Row():
with gr.Column():
steps = gr.Slider(minimum=1, maximum=100, value=25, step=1, label="Steps")
cfg_scale = gr.Slider(minimum=1, maximum=20, value=3.5, step=0.1, label="CFG Scale")
lora_scale = gr.Slider(minimum=0, maximum=2, value=1, step=0.1, label="LoRA Scale")
with gr.Column():
width = gr.Slider(minimum=256, maximum=1024, value=512, step=64, label="Width")
height = gr.Slider(minimum=256, maximum=1024, value=512, step=64, label="Height")
with gr.Row():
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
seed_input = gr.Number(label="Seed", value=0, interactive=True, visible=False)
selected_lora = gr.Markdown("### No LoRA selected")
progress_bar = gr.Markdown(visible=False)
# Event handlers
gallery.select(update_selection, [width, height], [prompt, selected_lora, width, height, generate])
randomize_seed.change(lambda x: gr.update(visible=not x), randomize_seed, seed_input)
generate_event = generate.click(run_lora, inputs=[prompt, cfg_scale, steps, randomize_seed, seed_input, width, height, lora_scale], outputs=[result, seed_output, progress_bar])
cancel.click(lambda: None, None, None, cancels=[generate_event])
demo.queue().launch()