Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,778 Bytes
0b25f63 9a3f0d1 0b25f63 e4ee15c 0b25f63 9a3f0d1 0b25f63 9a3f0d1 adddbc4 0b25f63 9a3f0d1 0b25f63 9a3f0d1 0b25f63 f30e9ce 5ce6559 0b25f63 e777edc 0b25f63 adddbc4 0b25f63 db5708c 0b25f63 0f2c19b 0b25f63 eb27870 0b25f63 adddbc4 0b25f63 e777edc adddbc4 0b25f63 e777edc 0b25f63 9a3f0d1 0b25f63 e777edc 0b25f63 f30e9ce 0b25f63 f30e9ce e777edc 0b25f63 e777edc 885080e f30e9ce 9a3f0d1 e777edc 9a3f0d1 e777edc 9f8a91d 9a3f0d1 e777edc eb27870 e777edc 9a3f0d1 0b25f63 e777edc 0b25f63 db5708c e777edc 0f2c19b 0b25f63 e777edc 9a3f0d1 0b25f63 e777edc 0b25f63 e777edc adddbc4 609484b adddbc4 4a9687c 9a3f0d1 e777edc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, FluxImg2ImgPipeline
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time
selected_lora_index = None
# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
loras = json.load(f)
# Initialize the base model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
pipe_i2i = FluxImg2ImgPipeline.from_pretrained(
base_model,
vae=good_vae,
transformer=pipe.transformer,
text_encoder=pipe.text_encoder,
tokenizer=pipe.tokenizer,
text_encoder_2=pipe.text_encoder_2,
tokenizer_2=pipe.tokenizer_2,
torch_dtype=dtype
)
MAX_SEED = 2**32-1
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def update_selection(evt: gr.SelectData, width, height):
global selected_lora_index
selected_lora_index = evt.index
selected_lora = loras[evt.index]
default_prompt = selected_lora.get('default_prompt', '')
new_placeholder = f"{selected_lora['trigger_word']} {default_prompt}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
width = 768
height = 1024
elif selected_lora["aspect"] == "landscape":
width = 1024
height = 768
else:
width = 1024
height = 1024
return (
gr.update(value=new_placeholder),
updated_text,
width,
height,
gr.update(interactive=True) # Enable the Generate button
)
@spaces.GPU(duration=70)
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("Generating image"):
# Generate image
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt_mash,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
output_type="pil",
good_vae=good_vae,
):
yield img
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
global selected_lora_index
if selected_lora_index is None:
raise gr.Error("You must select a LoRA before proceeding.")
selected_lora = loras[selected_lora_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
if trigger_word:
if "trigger_position" in selected_lora:
if selected_lora["trigger_position"] == "prepend":
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = f"{prompt} {trigger_word}"
else:
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = prompt
with calculateDuration("Unloading LoRA"):
pipe.unload_lora_weights()
# Load LoRA weights
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
if "weights" in selected_lora:
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
else:
pipe.load_lora_weights(lora_path)
# Set random seed for reproducibility
with calculateDuration("Randomizing seed"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
# Consume the generator to get the final image
final_image = None
step_counter = 0
for image in image_generator:
step_counter += 1
final_image = image
progress_bar = f'Generating image... Step {step_counter}/{steps}'
yield image, seed, gr.update(visible=True, value=progress_bar)
yield final_image, seed, gr.update(visible=False)
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Awaken Ones' Lora Previews")
gr.Markdown("Select a LoRA model from the gallery below to get started!")
with gr.Row():
gallery = gr.Gallery(
value=[lora["image"] for lora in loras],
label="LoRA Gallery",
show_label=False,
elem_id="gallery",
columns=[5],
rows=[3],
object_fit="contain",
height="auto",
)
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
placeholder="Type your prompt here...",
show_label=True,
)
with gr.Row():
generate = gr.Button("Generate", variant="primary", interactive=False)
cancel = gr.Button("Cancel")
with gr.Row():
with gr.Column(scale=4):
result = gr.Image(label="Result", show_label=False, elem_id="result")
with gr.Column(scale=1):
seed_output = gr.Number(label="Seed", interactive=False)
with gr.Row():
with gr.Column():
steps = gr.Slider(minimum=1, maximum=100, value=25, step=1, label="Steps")
cfg_scale = gr.Slider(minimum=1, maximum=20, value=3.5, step=0.1, label="CFG Scale")
lora_scale = gr.Slider(minimum=0, maximum=2, value=1, step=0.1, label="LoRA Scale")
with gr.Column():
width = gr.Slider(minimum=256, maximum=1024, value=512, step=64, label="Width")
height = gr.Slider(minimum=256, maximum=1024, value=512, step=64, label="Height")
with gr.Row():
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
seed_input = gr.Number(label="Seed", value=0, interactive=True, visible=False)
selected_lora = gr.Markdown("### No LoRA selected")
progress_bar = gr.Markdown(visible=False)
# Event handlers
gallery.select(update_selection, [width, height], [prompt, selected_lora, width, height, generate])
randomize_seed.change(lambda x: gr.update(visible=not x), randomize_seed, seed_input)
generate_event = generate.click(run_lora, inputs=[prompt, cfg_scale, steps, randomize_seed, seed_input, width, height, lora_scale], outputs=[result, seed_output, progress_bar])
cancel.click(lambda: None, None, None, cancels=[generate_event])
demo.queue().launch() |