Spaces:
Runtime error
Runtime error
File size: 6,433 Bytes
c5273f3 41422db 77bbd4b bb136f1 c5273f3 fe041cb 41422db c5273f3 41422db 77bbd4b c5273f3 41422db c5273f3 41422db c5273f3 41422db c5273f3 fe041cb c5273f3 fe041cb b6743fd fe041cb c5273f3 fe041cb b6743fd fe041cb b6743fd fe041cb b6743fd fe041cb c5273f3 c5d3c0b 41422db bb136f1 41422db fc083dc 41422db fc083dc c5273f3 41422db bb136f1 fc083dc bb136f1 41422db bb136f1 41422db bb136f1 c5273f3 bb136f1 ac1e0aa bb136f1 c5273f3 bb136f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain.smith import RunEvalConfig, run_on_dataset
import os
from langchain_community.vectorstores import FAISS
from langchain.prompts import ChatPromptTemplate
from pathlib import Path
import json
from typing import Dict, List, Optional
from langchain_core.documents import Document
from langchain.callbacks.tracers import ConsoleCallbackHandler
class DesignRAG:
def __init__(self):
# Get API keys from environment
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
raise ValueError(
"OPENAI_API_KEY environment variable not set. "
"Please set it in HuggingFace Spaces settings."
)
# Initialize embedding model with explicit API key
self.embeddings = OpenAIEmbeddings(
openai_api_key=api_key
)
# Load design data and create vector store
self.vector_store = self._create_vector_store()
# Create retriever with tracing
self.retriever = self.vector_store.as_retriever(
search_type="similarity",
search_kwargs={"k": 1},
tags=["design_retriever"] # Add tags for tracing
)
# Create LLM with tracing
self.llm = ChatOpenAI(
temperature=0.2,
tags=["design_llm"] # Add tags for tracing
)
def _create_vector_store(self) -> FAISS:
"""Create FAISS vector store from design metadata"""
try:
# Update path to look in data/designs
designs_dir = Path(__file__).parent.parent / "data" / "designs"
documents = []
# Load all metadata files
for design_dir in designs_dir.glob("**/metadata.json"):
try:
with open(design_dir, "r") as f:
metadata = json.load(f)
# Create document text from metadata with safe gets
text = f"""
Design {metadata.get('id', 'unknown')}:
Description: {metadata.get('description', 'No description available')}
Categories: {', '.join(metadata.get('categories', []))}
Visual Characteristics: {', '.join(metadata.get('visual_characteristics', []))}
"""
# Load associated CSS
'''
css_path = design_dir.parent / "style.css"
if css_path.exists():
with open(css_path, "r") as f:
css = f.read()
text += f"\nCSS:\n{css}"
'''
# Create Document object with minimal metadata
documents.append(
Document(
page_content=text.strip(),
metadata={
"id": metadata.get('id', 'unknown'),
"path": str(design_dir.parent)
}
)
)
except Exception as e:
print(f"Error processing design {design_dir}: {e}")
continue
if not documents:
print("Warning: No valid design documents found")
# Create empty vector store with a placeholder document
return FAISS.from_documents(
[Document(page_content="No designs available", metadata={"id": "placeholder"})],
self.embeddings
)
print(f"Loaded {len(documents)} design documents")
# Create and return vector store
return FAISS.from_documents(documents, self.embeddings)
except Exception as e:
print(f"Error creating vector store: {str(e)}")
raise
async def query_similar_designs(self, conversation_history: List[str], num_examples: int = 1) -> str:
"""Find similar designs based on conversation history"""
from langsmith import Client
from langchain.callbacks.tracers import ConsoleCallbackHandler
# Create LangSmith client
client = Client()
# Create query generation prompt with tracing
query_prompt = ChatPromptTemplate.from_template(
"""Based on this conversation history:
{conversation}
Extract the key design requirements and create a search query to find similar designs.
Focus on:
1. Visual style and aesthetics mentioned
2. Design categories and themes discussed
3. Key visual characteristics requested
4. Overall mood and impact desired
5. Any specific preferences or constraints
Return only the search query text, no additional explanation or analysis."""
).with_config(tags=["query_generation"])
# Format conversation history
conversation_text = "\n".join([
f"{'User' if i % 2 == 0 else 'Assistant'}: {msg}"
for i, msg in enumerate(conversation_history)
])
# Generate optimized search query with tracing
query_response = await self.llm.ainvoke(
query_prompt.format(
conversation=conversation_text
)
)
print(f"Generated query: {query_response.content}")
# Get relevant documents with tracing
docs = self.retriever.get_relevant_documents(
query_response.content,
k=num_examples,
callbacks=[ConsoleCallbackHandler()] # Use standard callback instead
)
# Format examples
examples = []
for doc in docs:
design_id = doc.metadata.get("id", "unknown")
content_lines = doc.page_content.strip().split("\n")
examples.append(
"\n".join(line.strip() for line in content_lines if line.strip()) +
f"\nURL: https://csszengarden.com/{design_id}"
)
return "\n\n".join(examples) |