Technologic101 commited on
Commit
b6743fd
·
1 Parent(s): 13e710f

task: updates design_rag with doc args, removed css

Browse files
Files changed (1) hide show
  1. src/chains/design_rag.py +8 -5
src/chains/design_rag.py CHANGED
@@ -29,8 +29,8 @@ class DesignRAG:
29
  """Create FAISS vector store from design metadata"""
30
  try:
31
  # Update path to look in data/designs
32
- designs_dir = Path("data/designs")
33
-
34
  documents = []
35
 
36
  # Load all metadata files
@@ -48,12 +48,14 @@ class DesignRAG:
48
  """
49
 
50
  # Load associated CSS
 
51
  css_path = design_dir.parent / "style.css"
52
  if css_path.exists():
53
  with open(css_path, "r") as f:
54
  css = f.read()
55
  text += f"\nCSS:\n{css}"
56
-
 
57
  # Create Document object with minimal metadata
58
  documents.append(
59
  Document(
@@ -76,13 +78,14 @@ class DesignRAG:
76
  self.embeddings
77
  )
78
 
 
79
  # Create and return vector store
80
  return FAISS.from_documents(documents, self.embeddings)
81
  except Exception as e:
82
  print(f"Error creating vector store: {str(e)}")
83
  raise
84
 
85
- async def query_similar_designs(self, requirements: Dict) -> str:
86
  """Find similar designs based on requirements"""
87
  # Create search query from requirements
88
  query = f"""
@@ -94,7 +97,7 @@ class DesignRAG:
94
  """
95
 
96
  # Get similar documents
97
- docs = await self.retriever.get_relevant_documents(query)
98
 
99
  # Format examples
100
  examples = []
 
29
  """Create FAISS vector store from design metadata"""
30
  try:
31
  # Update path to look in data/designs
32
+ designs_dir = Path(__file__).parent.parent / "data" / "designs"
33
+
34
  documents = []
35
 
36
  # Load all metadata files
 
48
  """
49
 
50
  # Load associated CSS
51
+ '''
52
  css_path = design_dir.parent / "style.css"
53
  if css_path.exists():
54
  with open(css_path, "r") as f:
55
  css = f.read()
56
  text += f"\nCSS:\n{css}"
57
+ '''
58
+
59
  # Create Document object with minimal metadata
60
  documents.append(
61
  Document(
 
78
  self.embeddings
79
  )
80
 
81
+ print(f"Loaded {len(documents)} design documents")
82
  # Create and return vector store
83
  return FAISS.from_documents(documents, self.embeddings)
84
  except Exception as e:
85
  print(f"Error creating vector store: {str(e)}")
86
  raise
87
 
88
+ async def query_similar_designs(self, requirements: Dict, num_examples: int = 5) -> str:
89
  """Find similar designs based on requirements"""
90
  # Create search query from requirements
91
  query = f"""
 
97
  """
98
 
99
  # Get similar documents
100
+ docs = await self.retriever.get_relevant_documents(query, k=num_examples)
101
 
102
  # Format examples
103
  examples = []